Побічне квантове число l визначає форму орбіталі та приймає значення 0, 1, 2, 3, …, котрі позначають буквами s, p, d, f,… . Електрон, що рухається, має момент кількості руху. При l = 0 момент кількості руху дорівнює нулю, і електричний заряд розмазаний по сфері, при l = 1 орбіталь має форму гантелі.
Магнітне квантове число т характеризує положення орбіталі в просторі та приймає значення від – l до l. При l = 0 магнітне квантове число дорівнює нулю, при l = 1 воно приймає значення -1, 0, +1; і орбіталі, що мають форму гантелі, розташовуються вздовж осей прямокутної системи координат.
Спінове квантове число тs, що дорівнює -1/2 та +1/2, відображає власний момент імпульсу електрона.
За принципом Паулі в атомі не може бути двох електронів з однаковим набором квантових чисел (хоча б одне число повинне відрізнятися). В іншому разі сили відштовхування "виштовхнули" б один з них на іншу орбіталь. Тому багатоелектронний атом має складну структуру: електрони з однаковими головними квантовими числами утворюють електронні шари-оболонки (рівні), що позначаються буквами K, L, M, … для п = 1, 2, 3, … відповідно, а електрони з однаковими побічними квантовими числами – підоболонки (підрівні) у межах однієї оболонки. Електрони з різними значеннями l та m та з однаковим п можуть бути рівними за енергією (виродженими), однак при дії будь-якого навколишнього поля (електричного, магнітного та ін.) виродження знімається.
Походження атомних спектрів. При зміні хоча б одного квантового числа атом отримує або віддає енергію. Це може трапитися при взаємодії атома з електромагнітним полем, при безпосередньому обміні енергією з іншими атомами або молекулами, наприклад, при зіткненні або при хімічних реакціях. При відсутності зовнішніх дій атом знаходиться в основному стані, тобто має найменшу енергію.
При отриманні енергії зовні швидкість електронів збільшується – атом збуджується.
Атом не може отримати або віддати довільну кількість енергії; енергетичний обмін здійснюється тільки кінцевими порціями, зокрема квантами електромагнітного випромінювання (фотонами). Іншими словами, атом може знаходитися тільки в певних енергетичних станах, що відрізняються один від одного на кінцеву величину.
На рис. 2 енергетичні стани відображені горизонтальними лініями, з яких нижча відповідає основному рівню, а інші – збудженим; переходи від одного стану в інший позначені стрілками.
Рис. 1.1.2. Енергетичні переходи в атомі
Один атом за один акт поглинає або випускає тільки один фотон з певною енергією (частотою). Хімічний елемент складається з багатьох однакових атомів, що можуть переходити на різні енергетичні рівні, випускаючи або поглинаючи фотони різних частот. Сукупність усіх фотонів однієї частоти складає спектральну лінію, при поглинанні її називають абсорбційною, при випусканні – емісійною. Сукупність всіх абсорбційних або всіх емісійних ліній називають абсорбційним (поглинання) або емісійним (випускання) спектром речовини.
Спектр поглинання отримують при розташуванні досліджуваної речовини в полі електромагнітного випромінювання (наприклад, на шляху світлового потоку), а для отримання спектру випускання попередньо переводять атоми речовини у збуджений стан, що досягається підведенням будь-якого виду енергії (теплової, хімічної, електричного заряду, електромагнітного випромінювання та ін.); після збудження атоми через 10-9 – 10-7 с повертаються в основний стан, випускаючи фотони або теплоту. В останньому випадку перехід буде відбуватися без випромінювання; на рис. 2 він зображений хвилястою стрілкою.
Частота випромінювання, що випускається або поглинається, визначається різницею енергії між електронними орбіталями ΔЕ:
ν = ΔЕ / h
Абсолютна енергія квантових станів невідома, і через це її відраховують від якогось рівня, умовно прийнятого за нульовий, а саме від енергії іонізації, тобто повного відриву електрону від атому.
Енергія атомних орбіталей дуже відрізняється. Так, для збудження електрону з ближньої до ядра орбіталі (головне квантове число п = 1) необхідно більш ніж 6·104 кДж·моль-1 (фотони, що випускаються, мають частоту рентгенівського випромінювання), а для збудження зовнішніх електронів достатньо 150–600 кДж·моль-1 (випромінювання ультрафіолетової та видимої областей). Зі збільшенням головного квантового числа енергія збудження ΔЕ та частота випромінювання зменшуються.
Найбільш вірогідні переходи з першого збудженого рівня на основний Е0; відповідні їм спектральні лінії називають резонансними. Електрон може перейти і в більш високий енергетичний стан (Е2, Е3, і т.д.). Повернення його на рівень Е0 може проходити через ряд проміжних ступенів.
Зовнішні електрони, що легко збуджуються, називають оптичними, переходи за їх участю дають оптичний спектр. Енергія збудження зовнішніх електронів різних елементів неоднакова. Наприклад, для отримання резонансної лінії лужних металів (перехід Е1 → Е0) потребується порівняно невисока енергія (~ 2 еВ, довжини хвиль лежать у видимій області), для неметалів ця енергія суттєво більше (~ 5 еВ, довжини хвиль лежать в УФ–області). Чим більше зовнішніх електронів, тим більше можливостей має атом для енергетичних переходів, через це спектри металів типу ферума складаються з тисяч ліній, а спектри лужних металів бідні на них.
Не всі оптичні переходи рівно вірогідні. Співпадання енергії переходу електрона та енергії поглинутого фотону – основна, проте не єдина умова зміни енергетичного стану атому. Переходи, вірогідність яких велика, називаються дозволеними, а вірогідність яких мала – забороненими. Вірогідність енергетичних змін диктується правилами відбору, заснованими на квантово-механічних уявленнях. Заборонений перехід більше ніж одного електрону, а також перехід зі зміною спіну та зміною побічного квантового числа більш ніж на одиницю (тобто дозволені переходи з s- на p-орбіталь або з p- на d-орбіталь і т.п., але не з s- на d- або з p- на f-орбіталь).
Лінії в спектрі обумовлені різними переходами багатьох однакових атомів. В одиницю часу речовина поглинає або випускає багато фотонів з енергією дозволених та мало з енергією заборонених переходів. Оскільки інтенсивність лінії пропорційна числу фотонів в секунду, то більш частішим переходам відповідає інтенсивна лінія, а рідшим – менш інтенсивна. Найбільш інтенсивні резонансні лінії, бо вірогідність переходу Е1 → Е0 велика.
Число фотонів z, що випускаються речовиною при переході електронів з рівня і на рівень k , пов’язано з числом атомів в стані і (Ni) відношенням
z = Aik Ni ,
де Aik – коефіцієнт Ейнштейна, рівний числу переходів і → k в 1 с (Aik = 107 - 109); якщо Aik = 0, то перехід заборонений.
Енергія одного фотону дорівнює hνik, отже, інтенсивність емісійної лінії I, рівну сумарній енергії всіх фотонів, можна виразити так:
I = hνik Aik Ni
Інтенсивність абсорбційної лінії залежить як від числа поглинаючих атомів і вірогідності поглинання фотона, так і від числа фотонів, що поглинають:
I = пhνkі Вkі Nk ,
де п – число фотонів з частотою νkі; Вkі – коефіцієнт Ейнштейна, що показує можливість переходу від стану k в стан і; Nk – число атомів в стані k, що поглинають.
Випускання – спонтанний процес, тому що атом завжди намагається перейти з нестабільного збудженого стану в більш стабільний стан з меншою енергією. Навпаки, поглинання – вимушений процес, що збільшує енергію атому за рахунок поглинутого фотона.
Якщо передати атому високу енергію (103 – 105 еВ) (наприклад, опромінити речовину потоком швидких електронів або рентгенівським випромінюванням), то можливо збудження внутрішнього електрону та вилучення його з орбіталей K, L і т.д. В цьому випадку на вільне місце може перейти електрон з більш віддаленої орбіталі (наприклад, з L на К-орбіталь, з М на L-орбіталь, з М на К-орбіталь). При цьому випускається квант рентгенівського випромінювання.
3. Будова молекул та походження молекулярних спектрів
Молекули складаються з двох чи більше атомів, з’єднаних між собою в певному порядку хімічними зв’язками, які утворені при взаємодії зовнішніх електронів. При цьому атоми зближаються, але так, що їх завершені оболонки не торкаються. Енергетична будова молекули складніша, ніж у атома. Наряду з рухом електронів відбувається коливальний рух самих атомів, точніше їх ядер, та обертання молекули як цілого. Отже, в будь-якому стаціонарному стані енергія молекули складається з електронної, коливальної та обертальної енергій:
Е = Еел + Екол + Еоб
Найбільший вклад в повну енергію вносить енергія електронів, найменший – енергія обертання молекули:
Еел >>Екол >> Еоб
Обертання молекул проявляється у речовин лише в стані газу, в конденсованих станах (рідкому та твердому) обертання ускладнено.
Так само як і атом, молекула може існувати лише в певних енергетичних станах, що називаються енергетичними рівнями (орбіталями). Кожному електронному стану відповідають коливальні рівні, а кожному коливальному рівню – обертальні. Будь-який рівень, окрім головного, побічного, магнітного та спінового, характеризується коливальним та обертальним квантовими числами.