Конструкции аппаратов с выносными циркуляционными трубами несколько более сложны, но в них достигается более интенсивная теплопередача и уменьшается расход металла на 1
поверхности нагрева по сравнению с аппаратами с подвесной нагревательной камерой или центральной циркуляционной трубой.Аппарат в выносной нагревательной камерой работает при более интенсивной естественной циркуляции, обусловленной тем, что циркуляционная труба не обогревается, а подъемный и опускной участки циркуляционного контура имеют значительную высоту.
В аппаратах с вынесенной зоной кипения кипящий раствор не соприкасается с поверхностью теплообмена, что уменьшает отложение накипи. В этих аппаратах значительно снижается брызгоунос, достигается большая скорость циркуляции раствора, что приводит к увеличению производительности и интенсификации теплообмена. Аппараты с вынесенной зоной кипения могут эффективно применятся для выпаривания кристаллизирующихся растворов умеренной вязкости.
Принципиальное отличие прямоточных аппаратов с естественной циркуляцией состоит в том, что выпаривание в них происходит при однократном прохождении выпариваемого раствора по трубам нагревательной камеры, выпаривание осуществляется без циркуляции раствора. В таких аппаратах достигается снижение температурных потерь, обусловленных гидростатической дисперсией.
В роторных прямоточных аппаратах достигается интенсивный теплообмен при небольшом уносе жидкости вторичным паром. Вместе с тем роторные аппараты сложны в изготовлении и отличаются относительно высокой стоимостью эксплуатации, вследствие вращающихся частей (ротора).
В аппаратах с принудительной циркуляцией скорость ее определяется производительностью циркуляционного насоса и не зависит от высоты уровня жидкости в трубах, а также от интенсивности парообразования. Поэтому в аппаратах с принудительной циркуляцией выпаривание протекает при малых полезных разностях температур, не превышающих 3-5 К и при значительных вязкостях растворов.
В выпарных аппаратах с тепловым насосом, с помощью теплового насоса, представляющего собой трансформатор тепла, повышают экономичность работы однокорпусного аппарата, сжимая вторичный пар на выходе из аппарата до давления свежего (первичного) пара и направляя его в нагревательную камеру того же аппарата. В отдельных случаях выпарные аппараты с тепловым насосом могут конкурировать с многокорпусными выпарными установками.
2 Технологическая часть
В однокорпусной выпарной установке подвергается выпариванию водный раствор хлорида аммония под вакуумом.
Исходный раствор хлорида кальция с начальной концентрацией
масс. долей из емкости Е1 подается центробежным насосом Н2 в теплообменник АТ1, где подогревается до температуры, близкой к температуре кипения , а затем поступает в греющую камеру выпарного аппарата 4. В данном варианте схемы применен выпарной аппарат с вынесенной греющей камерой и трубой вскипания. Выпариваемый раствор, двигаясь в греющей камере по трубе вскипания, нагревается и кипит при средней температуре с образованием вторичного пара. Отделение пара от жидкости происходит в сепараторе выпарного аппарата. Освобожденный от брызг и капель вторичный пар удаляется из верхней части сепаратора.Движение раствора и вторичного пара осуществляется вследствие перепада давлений. В выпарном аппарате давление
и температура . В барометрическом конденсаторе вода и пар движутся в противоположных направлениях (пар – снизу, вода – сверху). Давление в барометрическом конденсаторе . Для увеличения поверхности контакта фаз конденсатор снабжен переливными полками. Смесь охлаждающей воды и конденсата выводится из конденсатора самотеком при гидрометрической трубе с гидрозатвором.Концентрированный раствор карбоната калия с концентрацией
%масс. после выпарного аппарата подается в двухходовой холодильник AT3, где охлаждается до температуры . Затем концентрированный раствор отводится в вакуум-сборники, работающие попеременно. Вакуум-сборники опорожняются периодически (по мере накопления). Далее раствор с помощью центробежного насоса Н2 подается в емкость упаренного раствора.3 Инженерные расчеты
3.1 Материальный баланс процесса выпаривания
Основные уравнения материального баланса:
(3.1) (3.2)где
, - соответственно массовые расходы начального и конечного раствора, кг/с; , - соответственно массовые доли растворенного вещества в начальном и конечном растворе;W – массовый расход выпариваемой воды, кг/с.
Из формулы 3.2 получаем:
; кг/с.Решая совместно уравнения 3.1 и 3.2 получаем:
; кг/с.Материальный баланс выпаривания
Таблица 3.1
Поток | Обозначение | Численное значение, кг/с | Содержание соли, массовые доли |
Исходный раствор | 4,58 | 0,12 | |
Упаренный раствор | 2,2 | 0,25 | |
Вторичный пар | W | 2,38 | - |
3.2 Определение температур и давлений в узловых
точках технологической схемы
3.2.1 Определение температуры конденсации и давления вторичного пара в барометрическом конденсаторе
Температуру конденсации вторичного пара в барометрическом конденсаторе мы определяем по формуле:
(3.3)где
- температура конденсации греющего пара, ;- полезная разность температур, К.
Принимаем
= 40 К.- температурная депрессия, К;
- гидростатическая депрессия, К.
Принимаем
= 5 К.- гидравлическая депрессия, К.
Принимаем
= 1 К.Давление греющего пара:
где
- атмосферное давление, - избыточное давление греющего пара.По,
находим по (/1/, табл. LVII,стр. 549) температуру греющего пара : . полагаем равной при и . По (/1/, рис. XIX, стр. 568), находим :.
Подставляя, найденные значения
и в уравнение для получаем: .