МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ
Воронежский государственный технический университет
Физико-технический факультет
по дисциплине «Физическая химия»
Тема: Вычисление термодинамических функций индивидуального вещества H2, расчет константы равновесия реакции 2MgOконд+Сграф↔ 2Mgконд+СО2.
Построение и анализ диаграммы состояния двухкомпонентной системы La—Sb.
Выполнил студент ЛП – 061 ____X_HACKER
Руководитель А.Н. Корнеева
Нормоконтроль А.Н. Корнеева
Защищена________________Оценка______________________
2008 г
Воронежский государственный технический университет
Кафедра физики, химии и технологии литейных процессов
ЗАДАНИЕ
На курсовую работу по дисциплине
«Физическая химия»
Специальность 150104: «Литейное производство черных и цветных металлов»
Тема работы: Вычисление термодинамических функций заданного вещества H и константы равновесия заданной реакции
2MgOконд+Сграф↔ 2Mgконд+СО2
Построение и анализ диаграммы двойной системы La—Sb.
Содержание расчетно-пояснительной записки:
1 Вычисление термодинамических функций.
1.1 Вычисление термодинамических функций H0(T)-H0(0), S0(T), Ф0(Т), G0(T)-G0(0) для заданного веществаH в интервале температур 100-500К.
1.2 Описание физических и химических свойств веществаH
, его применение.1.3 Расчет константы равновесия реакции 2MgOконд+Сграф↔ 2Mgконд+СО2в интервале температур 1400 - 2400К, двумя способами и с помощью применения приведенной энергии Гиббса.
2 Построение и исследование диаграммы состояния двойной системы La—Sb.
2.1 Построение и исследование диаграммы состояния La—Sbпо следующим пунктам:
2.1.1 Построить диаграмму состояния в La—Sbмасс.д. и молек.д., определить тип диаграммы состояния, дать фазовый состав всех ее областей.
2.1.2 Установить формулы химических соединений, если таковые имеются на заданной диаграмме состояния La—Sb.
2.1.3 Указать температуру начала и конца кристаллизации для расплава системы, La—Sbсодержащей 0,6 ат.д. Sb.
2.1.4 Определить природу и состав первых выпавших кристаллов из расплава, содержащего, 0,6 ат.д. Sb, а так же состав последних капель этого расплава.
2.1.5 По правилу рычага для системы La—Sbсодержащей 0,6 ат.д. Sb, при температуре 1200oC, определить массы равновесных фаз, если было взято 50 г исходного сплава.
2.1.6 Найти число степеней свободы, в точках, соответствующих следующему составу системы и температуре:
Состав 0,4 ат.д. Sb, температура 1690oC
Состав 0,2 ат.д. Sb, температура 800oC
Состав 0.8 ат.д. Sb, температура 1400oC
2.1.7 Нарисовать кривую охлаждения для системы, содержащей, 0,6 ат.д. Sb, и дать полное описание процесса охлаждения.
Руководитель работы:
Корнеева А.Н._________________________
Исполнитель:
Щербаков А.Е.________________________
Дата выдачи задания_____________________
Дата сдачи курсовой работы_____________
Дата защиты __________________________
СОДЕРЖАНИЕ
Задание
Содержание
1. Вычисление термодинамических функций
1.1. Вычисление термодинамических функций H0(T) - H0(0), S0(T), Ф0(T),
G0(T) - G0(0) для заданного вещества Н2 в интервале температур
100-500К.
1.2. Описание физических, химических свойств вещества H2 и его
применение.
1.3. Расчет константы равновесия реакции
2MgOконд+Сграф↔ 2Mgконд+СО2 в интервале температур 1400-2400К двумя
способами: с помощью энтропии и приведенной энергии Гиббса.
2. Построение и исследование диаграммы состояния двухкомпонентной
Системы La—Sb.
2.1. Построение и исследование диаграммы состояния La—Sbпо
следующим пунктам:
2.1.1. Построить диаграмму состояния La—Sbв масс. д. и молек. д.,
определить тип диаграммы состояния, дать фазовый состав всех её областей.
2.1.2.Установить формулы химических соединений, если таковые
имеются на заданной диаграмме состояния La—Sb.
2.1.3. Указать температуру начала и конца кристаллизации
для расплава системыLa—Sb, содержащей 0.6 ат. д. Sb.
2.1.4. Определить природу и состав первых выпавших кристаллов из
расплава, содержащего 0.6 ат Sb ат. д., а также состав последних
капель этого расплава.
2.1.5. По правилу рычага для системы La—Sb, содержащей 0.6 ат. д. Sb
при температуре 12000C, определить массы равновесных фаз,
если было взято 50 г исходного сплава.
2.1.6. Нахождение количества степеней свободы в точках,
соответствующих следующему составу системы и температуре:
Состав 0,4 ат.д. Sb, температура 1690oC
Состав 0,2 ат.д. Sb, температура 800oC
Состав 0.8 ат.д. Sb, температура 1400oC
2.1.7. Кривая охлаждения для системы, содержащей 0.6 ат.д Sb, и полное описание процесса охлаждения.
Приложение А
Приложение Б
Приложение В
Приложение Г
Приложение Д
Список литературы
1. ВЫЧИСЛЕНИЕ ТЕРМОДИНАМИЧЕСКИХ ФУНКЦИЙ.
1.1 Для вычисления термодинамических функций H°(T)-H°(0), S°(T), Ф°(Т), G°(Т)-G°(0) заданного вещества H , в интервале температур 100-500 К с шагом 25 К используем табличные значения термодинамических функций Ср(Т), S0(100) и H0(100)-H0(0), приведенные в источнике [1]. Расчет термодинамических функций при температурах 100, 200, 300, 400, 500 К производим по формулам из источника [2]:
а) изменение энтальпии
(1)б) изменение энтропии
(2)в) изменение энергии Гиббса
(3)г) изменение приведенной энергии Гиббса:
, (4)где:
— высокотемпературная составляющая стандартной энтальпии; — значение стандартной теплоёмкости ; — стандартная энтропия индивидуального вещества при указанной температуре; — приведённая энергия Гиббса; — разность стандартных энергий Гиббса при заданной температуре и при 0 К.Для обеспечения точности вычисления термодинамических функций индивидуального вещества при указанных температурах с ошибкой не выше ~1%, стоградусный интервал, с которым приведены теплоемкости в источнике [1], разбивается на четыре равные части, и проводятся вычисления термодинамических функций
и c шагом 25К, что достигается с помощью аппроксимации уравнений.Выполнение расчетов термодинамических функций индивидуального вещества вышеизложенным образом осуществляется с помощью специальной компьютерной программы.
Значение термодинамических функций C0(T) и C0(T)/T для индивидуального вещества H приведены в таблице 1.
Таблица 1
значение функций С0(Т) и С0(Т)/Т для H .
Т,К | С0(Т), Дж/моль*К | С0(Т)/Т |
100 | 28.1550 | 0.2816 |
125 | 27.3679 | 0.2281 |
150 | 27.0895 | 0.1880 |
175 | 27.1611 | 0.1585 |
200 | 27.4470 | 0.1372 |
225 | 27.8350 | 0.1220 |
250 | 28.2358 | 0.1111 |
275 | 28.5837 | 0.1028 |
300 | 28.8360 | 0.0961 |
325 | 28.9732 | 0.0901 |
350 | 28.9993 | 0.0842 |
375 | 28.9411 | 0.0782 |
400 | 28.8490 | 0.0721 |
425 | 28.7965 | 0.0664 |
450 | 28.8803 | 0.0617 |
475 | 29.2204 | 0.0599 |
500 | 29.9600 | 0.0591 |
Примечание: С0(Т) – теплоёмкость вещества, рассчитывается при P=const.
Таблица 2.
Значение функций H0(T)-H0(0),S0(T),G0(T)-G0(0) для H .
Т,К | Н0(Т)-Н0(0), кДж/моль | S0(T), Дж/моль*К | Ф0(Т), Дж/моль*К | G0(T)-G0(0), кДж/моль |
100 | 2.9990 | 100.6160 | 70.6260 | -7.06260 |
200 | 5.7315 | 120.1235 | 91.4662 | -18.29323 |
300 | 8.5517 | 131.4133 | 102.9076 | -30.87229 |
400 | 11.4462 | 139.8283 | 111.2128 | -44.48514 |
500 | 14.3515 | 146.1412 | 117.4382 | -58.71912 |
Примечание: