Для целей определения ферментов могут быть использованы не только измерение поглощения света, но также измерения флюоресценции - спектрофлюорометрические методы. Такое определение активности фермента в ряде случаев по чувствительности превосходит спектрофотометрические методы на целый порядок величины. Некоторые коферменты и субстраты обладают сильной флюоресценцией. НАД и НАДФ в восстановленном состоянии имеют сильную флюоресценцию и не флюоресцируют в окисленном состоянии. Поэтому спектрофлюорометрию используют для изучения кинетики и механизма действия никотинамидных и флавиновых ферментов.
Колориметрические (фотометрические) методы. В основе этих методов лежит измерение при помощи визуального или фотоэлектрического колориметра окрашенного продукта, образующегося при взаимодействии субстрата или продукта действия фермента со специфическими реактивами, которые обычно добавляются в фиксированную опытную пробу, взятую после остановки ферментативной реакции. Эти методы весьма разнообразны. Разработаны количественные методы, основанные на биуретовой реакции, при которой состав белка, очевидно не должен сказываться на результатах определения, т.к. эта реакция на пептидные связи, а не на боковые группы в белке. Метод Горнелла и соавторов, основанный на измерении полосы поглощения в области 550-650 нм, используется для определения значительных количеств (1-10 мг) белка в пробе. Предлагаются биуретовые микрометоды, основанные на поглощении ультрафиолетовых лучей медно-белковыми комплексами: они позволяют определять 0.1 - 2.0 мг белка в пробе. Число небелковых веществ, которые могут влиять на определения с помощью биуретовой реакции, невелико, но следует вносить поправки на те вещества, которые присутствуют в высоким концентрациях (соли аммония, сахароза). Наиболее ценными являются те фотометрические методы, которые позволяют следить во времени за ходом ферментативной реакции без ее прекращения по изменению окраски хромогенного субстрата или добавленного индикатора. Метод Фолина и Чиокальто, предложенный для определения количества белка, основан на хромогенной природе некоторых боковых групп аминокислот, а также на присутствии в белках пептидных связей. Этот метод обладает высокой чувствительностью (на пробу достаточно 0.01 - 0.1 мг белка), но многие небелковые вещества мешают определению.
В настоящее время для определения количества белка широко пользуются измерениями интенсивности поглощения света при 280 нм, которое обусловлено присутствием в белке ароматических аминокислот. Количество этих аминокислот в разных белках различно и ,следовательно, интенсивность неодинакова. В кювете толщиной 1 см у раствора, содержащего 1 мг “усредненного” белка в 1 мл, оптическая плотность равна 1 при длине волны 280 нм. Нуклеиновые кислоты поглощают при 280 нм, но можно сделать поправку на их присутствие, проводя измерения и при 260 нм и при 280 нм. Очень важна быстрота измерения активности ферментов. То же относится и к измерению количества сухого остатка или количества белка. Тем самым предпочитают быстрый метод определения белка путем измерения величины поглощения при 280 нм. Выигранное время важнее, за счет того, что удельное поглощение выделяемого белка иногда значительно отличается от средней величины поглощения смеси белков, присутствовавших в исходном материале.
Манометрические методы. Эти методы используются при определении активности фермента в тех случаях, когда в исследуемых реакциях один из компонентов находится в газообразном состоянии. К таким реакциям относится главным образом те, которые связаны с процессами окисления и декарбоксилирования, сопровождающимися поглощением или выделением кислорода и углекислоты, а также реакции, в которых выделение или связывание газа происходит в результате взаимодействия продуктов ферментативного превращения с добавленным в систему реактивом. Наблюдение за ходом реакции во времени проводится в специальных приборах - манометрических аппаратах Варбурга.
Другие методы. Сюда относится обширный ряд методов, включающих поляриметрию, вискозиметрию и кондуктометрические измерения и т.п. Также определение активности можно выполнять, используя методы хроматографии и электрофореза на бумаге. Эти методы высокочувствительны и специфичны, что делает их во многих случаях незаменимыми; они позволяют значительно сократить расход фермента на измерение активности, но не всегда применимы ввиду продолжительности разделения веществ в процессе хроматографии (и электрофореза).
2.1.11. Получение ферментных препаратов.
Технические препараты ферментов. Комплексный амилолитический ферментный препарат получают путем выращивания плесневых грибов на твердой питательной среде с последующей сушкой и измельчением полученной массы. Более активный препарат фермента получают путем экстракции такого “грибного солода” с последующим выпариванием и сушкой. Еще более активные ферментные препараты можно выделить из культуральной жидкости путем осаждения амилазы ацетоном и дальнейшим высушиванием коагулятом при температуре 27-270С. Для осаждения фермента часто используют и сульфат аммония. Предварительно культуральную жидкость выпаривают при температуре 400 С до 40%-ного содержания сухих веществ. Коагулят сушат вместе с наполнителем.
Комплекс ферментов протеолитического и амилолитического действия получают при помощи культуры Bacillus subtilis. Это аэробные, грамположительные, подвижные палочки. Для этих бактерий характерен очень богатый комплекс гидролитических ферментов. В качестве источников питания они могут использовать белки, углеводы, спирты, органические кислоты. Bacillus subtilis культивируют как методом поверхностного культивирования на отрубях, так и в жидких средах особого состава по методу глубинного культивирования.
Целлюлолитические ферментные препараты. Производство целлюлаз основывается на использовании культуры гриба Trichoderma viride. Существующие в настоящее время способы получения целлюлаз в глубинной культуре предполагает выращивание микроорганизмов-продуцентов целлюлаз на питательной среде, содержащей в качестве источников углерода, как правило, очищенную целлюлозу, или же содержащие ее природные субстраты. Но получение целлюлазы с использованием в качестве основного компонента среды природной целлюлозы (например, древесные опилки) сопряжено с рядом технологических трудностей. Более рационально использование питательной среды, содержащей растворимый “индуктор”. Такой питательной средой может быть молочная сыворотка, основным компонентом которой является лактоза (предварительно от молочной сыворотки отделяют белок). В качестве продуцента может быть использован гриб Trichoderma lignorum, позволяющий получить весь комплекс целлюлолитических ферментов, необходимый для расщепления природных целлюлозусодержащих субстратов.
3.АМИЛОЛИТИЧЕСКИЕ ПРЕПАРАТЫ
Амилолитические препараты широко выпускаются в нашей стране и за рубежом. В основном это крупнотоннажное производство. Амилазы находят применение почти во всех областях, где перерабатывается крахмалсо-держащее сырье. Амилазы используют для осахаривания зернового и картофельного крахмала. Самым большим потребителем амилолитических ферментов является спиртовая и пивоваренная промышленности, где в настоящее время солод (проращенное зерно) успешно заменяется амилолитическими ферментными препаратами.
3.1. Источники получения амилаз
Амилазы очень широко распространены в природе. Они синтезируются многими микроорганизмами (бактерии, грибы, актиномицеты, дрожжи), животными и растениями. До развития ферментной промышленности главным промышленным источником получения амилаз в европейских странах было проросшее зерно (солод). Для медицинских целей амилазы получали из животного сырья. В настоящее время главным источником амилаз являются микроорганизмы, особенно бактерии, грибы и реже дрожжи.
3.2. Механизм действия и свойства амилаз
Субстратами для действия амилаз являются крахмал, состоящий из амилозы и амилопектина, продукты частичного гидролиза крахмала и гликоген. Крахмал - растительный полисахарид с очень сложным строением. Это двухкомпонентное соединение, состоящее из 13-30% амилозы и 70-85% амилопектина. Оба компонента неоднородны, их молекулярная масса (М. м.) колеблется в широких пределах и зависит от природы крахмала. Амилоза - это неветвящийся полимер, в котором остатки глюкозы соединены a-1, 4-гликозидной связью; степень полимеризации около 2000. В «аномальных» амилозах с одной-двумя a-1, 6-связями полимеризация может возрасти до 6000 (рис.1). Амилоза практически не обладает восстанавливающей способностью, так как в каждой молекуле амилозы имеется только одна свободная альдегидная группа.
Молекула амилозы представляет собой растянутую спираль, шаг которой составляет 10,6 А и в каждый виток входит 3 остатка глюкозы. Максимальная длина молекулы амилозы достигает 7000 А. В растворе спираль сжимается за счет увеличения витка, в котором уже участвует 6 остатков глюкозы. При вхождении молекул йода в спираль амилозы возникает характерный синий цвет. Строго говорить о величине молекулы амилозы нельзя, т. е. даже из одного образца крахмала извлекается амилоза, с величиной молекулы от 500 до 2000 остатков глюкозы. Амилопектин имеет большую молекулярную массу, чем амилоза, и более сложное строение. Это ветвящийся полисахарид. Предполагается, амилопектин ветвится дихотомически, т. е. число концевых звеньев всегда на единицу больше числа звеньев, дающих ветвление, а сумма этих чисел дает общее число звеньев по всей цепи (см. рис. 2.2).