Смекни!
smekni.com

Амилолитические ферменты (стр. 6 из 12)

Механизм действия. К группе амилотических ферментов относятся a- и b-амилазы, глюкоамилаза, пуллуланаза, изоамилаза и некоторые другие ферменты. Амилазы бывают двух типов: эндо- и экзоамилазы. Четко выра­женной эндоамилазой является а-амилаза, способная к разрыву внутримо­лекулярных связей в высокополимерных цепях субстрата.

Глюкоамилаза и b-амилаза являются экзоамилазами, т. е. ферментами, атакующими субстрат с нередуцирующего конца.

При изучении механизма действия амилаз имеются определенные слож­ности, и прежде всего они заключаются в том, что субстрат - крахмал неод­нороден и имеет различные характеристики по степени полимеризации гли-козидной цепи и количеству ветвлений.

Реакции, катализируемые амилазами, имеют две стадии: короткую -предстационарную и длительную - стационарную. Во время первой стадии эндоамилаза быстро уменьшает молекулярную массу субстрата, образуя смесь линейных и разветвленных олигосахаридов. Второй этап реакции продолжается, пока продукты гидролиза не перестанут окрашиваться йо­дом; он протекает значительно медленнее и зависит от индивидуальных свойств фермента и его природы. Поэтому конечные продукты гидролиза а-амилазами могут быть различными. Первая стадия воздействия фермента на субстрат хотя и носит неупорядоченный характер, имеет для всех видов a-амилаз схожий механизм.

Существует две гипотезы о механизме действия экзоамилаз на субстрат. Первая гипотеза предполагает, что, воздействуя на субстрат по одноцепочечному или «молниеобразному» механизму, экзоамилаза образует фер­мент-субстратный комплекс с захватом нередуцирующего конца цепи.

Дальнейшее продвижение фер­мента по этой цепи происходит до полного ее гидролиза. По второй гипотезе (b- и глюко­амилаза действуют на субстрат путем механизма множественной атаки, т. е. фермент образует комплекс с молекулой субстрата, затем через несколько этапов этот комплекс распадается и фер­мент связывается с новой моле­кулой субстрата. Иными слова­ми, при множественной атаке происходит нечто среднее между неупорядоченным механизмом и одноцепочечной, «молниеобразной» атакой. Для полного гидро­лиза по этому механизму однамолекула субстрата должна образовывать много раз фермент-субстратные комплексы. При этом возможен гидролиз нескольких связей в одном ката­литическом акте.

Механизм воздействия амилаз на субстрат может быть рассмотрен с не­скольких позиций: вид разрываемой связи (a-1,4 или a-1,6); тип воздействия на субстрат (эндо- или экзо-); влияние на скорость гидро­лиза степени полимеризации субстрата;

4) возможность гидролиза олиго­сахаридов;

способность фермента к множественной атаке субстрата.

Наличие признаков амилаз, отраженных в 3 и 4 позициях, при действии на линейные субстраты может свидетельствовать о существовании у этих ферментов подцентровой структуры. Вероятно, активный центр амилазы может состоять из нескольких подцентров, каждый из которых может вступать в контакты с глюкозным остатком. Энергия взаимодействия (А;), выраженная в единицах свободной энергии (кДж/моль), определяет подцентровое сродство фермента к субстрату. Это сродство индивидуаль­но и может быть как положительным, так и отрицательным. Вероятность существования подцентровых структур амилаз помогает установить стро­ение активного центра амилаз, дает более четкое объяснение субстратной специфичности, но не дает объяснений механизма гидролиза разветвлен­ных субстратов.

a-Амилаза. а-Амилаза (а-1,4-глюкан-4-глюканогидролаза, КФ 3.2.1.1.) яв­ляется эндоамилазой, вызывающей гидролитическое расщепление a-1,4-гли-козидных связей внутри высокополимеризованного субстрата. Фермент на­зван a-амилазой потому, что он высвобождает глюкозу в a-мутамерной форме.

a-Амилаза - водорастворимый белок, обладающий свойствами глобулина и имеющий М. м. 45 000-60 000. Своего рода исключением является a-амилаза В. macerans, которая имеет М. м. 130 000. Есть указания, что некото­рые термостабильные a-амилазы имеют М. м. 14 000-15 000, но в их моле­кулах содержится в 2-3 раза больше атомов кальция.

Все а-амилазы относятся к металлоэнзимам, содержание в них Са колеб­лется от 1 до 30 г атом на 1 г моль фермента. Полное удаление кальция приводит к инактивации фермента. Повторное введение кальция в среду мо­жет частично восстановить его активность. a-Амилаза В. subtilis с помощью иона цинка способна образовывать димерную форму, чего лишены другие a-амилазы. Все a-амилазы устойчивы к воздействию протеаз. Они богаты ти­розином и триптофаном. Глютаминовая и аспарагиновая кислоты составля­ют 25% массы белка. Наличие этих кислот в а-амилазе связывают с их оса-харивающей способностью. Так, разжижающие a-амилазы не имеют сульфгидрильных групп, а осахаривающие содержат один остаток цистеина. Сравнительно мало или совсем отсутствуют в а-амилазах содержащие серу аминокислоты. Некоторые a-амилазы грибного происхождения имеют уг­леводный фрагмент, в состав которого могут входить манноза, ксилоза, гексозоамин, но функции его не установлены.

В зависимости от вида микроорганизма свойства ос-амилаз могут сильно отличаться не только по механизму воздействия на субстрат и конечным продуктам, но и по оптимальным условиям для проявления максимальной активности.

Действуя на целое крахмальное зерно, a-амилаза атакует его, разрыхляя поверхность и образуя каналы и бороздки, т.е. как бы раскалывает зерно на части. Клейстеризованный крахмал гидролизуется ею с образованием на окрашиваемые йодом продукты - в основном состоящие из низкомоле­кулярных декстринов. Процесс гидролиза крахмала многостадийный. В результате воздействия a-амилазы на первых стадиях процесса в гидролизате накапливаются декстрины, затем появляются неокрашивающиеся йо­дом тетра- и тримальтоза, которые очень медленно гидролизуются a-амилазой до ди- и моносахаридов.

Все a-амилазы проявляют наименьшее сродство к гидролизу концевых связей в субстрате. Некоторые же а-амилазы, особенно грибного происхож­дения, на второй стадии процесса гидролизуют субстрат более глубоко с об­разованием небольшого количества мальтозы и глюкозы. Схему гидролиза под действием а-амилазы можно записать следующим образом:

а-Амилаза

Крахмал,----------------> а-Декстрины + Мальтоза + Глюкоза

гликоген (много) (мало) (мало)

b-Амилаза. b-Амилаза (a-1,4-глюкан мальтогидролаза, КФ 3.2.1.2) - активный белок, обладающий свойст­вами альбумина. Каталити­ческий центр фермента со­держит сульфгидрильные и карбоксильные группы и имидозольный цикл остат­ков гистидина. b-Амилаза -экзофермент концевого дей­ствия, проявляющий срод­ство к предпоследней b-1,4-связи с нередуцирующего конца линейного участка амилозы и амилопектина.

В отличие от a-амилазы b-амилаза практически не гидролизует нативный крахмал, тогда как клейстеризованный крахмал гидро­лизуется ею с образованием мальтозы b-конфигурации, поэтому данная амилаза по аналогии с a-амилазой на­зывается b-амилазой. Если гидролизу подвергается амилоза, то гидролиз идет полностью до мальтозы. Не­значительное количество декстринов может образовы­ваться при гидролизе «ано­мальных» амилоз, так как гидролиз b-амилазой идет только по линейной цепи до a-1,6-связей. Если субстратом для b-амилазы служит амилопектин, то гидролиз идет в значительно меньшей степени. b-Амилаза отщепляет фрагмент с не­редуцирующего конца участка от внешних линейных ветвей, имеющих по 20-26 глюкозных остатков, с образованием 10—12 молекул мальтозы. Гид­ролиз приостанавливается на предпоследней a-1,4-связи, граничащей с a-1,6-связью. В гидролизате накапливается 54-58% мальтозы, остальное составляют высокомолекулярные декстрины, содержащие значи­тельное количество а-1,6-связей - так называемые b-декстрины. Действие b-амилазы на крахмал можно записать в виде следующей схемы:

b-Амилаза

Крахмал,----------------> Мальтоза + р-Декстрин

гликоген (54-58%) (42-46%)

b-Амилазы проявляют большую стабильность в отсутствие ионов Са2+.

Молекулярная масса b-амилазы растений достаточно высока, она составля­ет от 50 000 до 200 000. Фермент может состоять из одной или четырех субъединиц до 50 000 каж­дая. Фермент содержит SH-группы и чувствителен к действию тяжелых метал­лов. Считается, что (b-ами-лаза обладает высокой спо­собностью к множествен­ной атаке субстрата. Для амилозы средней молеку­лярной массы в одном при­соединении фермента к суб­страту возможно отщепле­ние до четырех остатков мальтозы. При увеличении молекулярной массы суб­страта возможно и большее количество мест атаки.

Глюкоамилаза. Глюкоамилаза (а-1,4-глюкан глюкогидролаза, КФ 3.2.1.3.) широко распространена в природе. Она синтезируется многими ми­кроорганизмами и образуется в животных тканях, особенно в печени, почках, плаценте кишечника и т. д. Фермент в литературе известен под различ­ными названиями: амилоглюкозидаза, g-амилаза, лизосомальная a-глюкозидаза, кислая мальтаза, матулаза и экзо-1,4-a-глюкозидаза. Глюкоамилаза катализирует последовательное отщепление концевых остатков a-D-глюкозы с нередуцирующих концов субстрата. Это фермент с экзогенным механизмом воздействия на субстрат. Многие глюкоамилазы обладают способностью так же быстро, как и a-1,4-связь, гидролизовать a-1,6-глюкозидные связи. Но это происходит только в том случае, когда за a-1,6-связью следует a-1,4-связь, поэтому декстран ими не гидролизуется. От­личительной особенностью глюкоамилаз является способность в десятки раз быстрее гидролизовать высокополимеризованный субстрат, чем олиго- и дисахариды.

В литературе высказывается мнение, что ме­ханизм атаки субстрата глюкоамилазой может быть двух типов: либо одноцепочечный, либо множественной атаки, и что активный центр имеет подцентровую структуру.

Почти все глюкоамилазы являются гликопротеидами, содержащими от 5 до 35% углеводов, которые состоят из олиго-, ди- и моносахаридов. Угле­водный компонент может быть целостным фрагментом или же разбитым на индивидуальные соединения, которые прикрепляются к белку через трео­нин и серин. Например, у глюкоамилазы A. niger их 20. Большинство из­вестных глюкоамилаз имеет оптимум рН при 4,5-5,2, реже - при 5,7-6,0, в основном для дрожжевых глюкоамилаз.