5. Разработка ЭХТС на базе печи конверсии
5.1 Энергетический баланс горения. Определение расхода топлива
Допущения:
1. Вся тепловая мощность, полученная при охлаждении топочных газов от температуры адиабатного горения до температуры T2=1835К, передается смеси метана и воды.
Энергетический баланс:
(см. ) (см. ) (см. )Расход топлива равен
5.2 Эксергетический анализ химического реактора
Эксергетический КПД химического реактора определяется из соотношения:
Зависимость эксергии компонента от температуры и парциального давления выражается соотношением:
Сечение 1-1: T1=Toc=T0=298,15K ; P1= Pº=1 атм
Эксергии компонентов:
Компонент | ||||
CH4 | 830,0 | 0,02287 | 820,635 | 0,4 |
С3H8 | 2149,0 | 0,02858 | 2140,2 | 0,5 |
O2 | 3,95 | 0,198 | 0 | Эксергиями компонентов воздуха пренебрегаем |
N2 | 0,70 | 0,7505 | 0 |
Сечение 21-21: T2=1835К ; P2= Pº=1 атм
Эксергии компонентов:
Компонент | ||||||
CO2 | 20,10 | 32,2 | 0,022 | 0,1056 | 72,55 | 1,9 |
O2 | 3,95 | 31,50 | 0,003 | 0,00917 | 39,49 | 0,165 |
H2O | 8,60 | 32,20 | 0,002 | 0,1556 | 27,21 | 2,8 |
N2 | 0,70 | 27,90 | 0,004 | 0,7296 | 32,40 | 13,128 |
Сечение 8-8: T8=573K ; P8=3,5МПа ( )
Эксергии компонентов:
Компонент | ||||||
CH4 | 830,0 | 14,32 | 0,075 | 0,2 | 833,1 | 0,4018 |
H2O | 8,60 | 32,3 | 0,002 | 0,8 | 16,68 | 1,607 |
Сечение 9-9: T9=1073K ; P9=2,5МПа
Эксергии компонентов:
Компонент | ||||||
CH4 | 830,0 | 14,32 | 0,075 | 0,0763 | 854,0361 | 0,0763 |
H2O | 8,60 | 32,30 | 0,002 | 0,411 | 21,96264 | 1,093 |
H2 | 0,07 | 28,80 | - | 0,41 | 246,3806 | 1,164 |
CO2 | 20,10 | 32,20 | 0,022 | 0,071 | 35,07467 | 0,189 |
CO | 275,40 | 28,40 | 0,004 | 0,051 | 282,6575 | 0,136 |
Эксергетический КПД химического реактора:
6. Процесс теплообмена
6.1 Эксергетический анализ
Допущение: участвующие в теплообмене газы рассматриваются как идеальные.
Эксергетический КПД процесса теплообмена определяется из соотношения:
Эксергия тепловой мощности:
6.2 Расчет турбокомпрессора
Исходные данные:
Давление метана на входе в компрессор P6=8 бар