Смекни!
smekni.com

Разработка энергохимико-технологической системы ЭХТС (стр. 4 из 4)

Температура на входе в компрессор Т6=300К

Энтропийный КПД компрессора

Механический КПД

Допущения:

1. Давление метана на выходе из компрессора принимается равным давлению газовой смеси на входе в реактор, P7=P8=35 бар (см. ).

2. Реальный процесс сжатия – политропный. Показатель политропы метана k=1,31.

3. КПД электродвигателя и передачи принимаются за 1.

4. Теплоемкость воды не зависит от температуры

6.3 Определение механической мощности турбокомпрессора

Массовый поток метана:

Механическую мощность турбокомпрессора находим по формуле

КПД компрессорной установки


Степень сжатия газа в ступени полагаем ε=3;

Значит, турбокомпрессор – двухступенчатый, z=2.

Работа обратимого процесса (удельная):

Внешняя работа (работа реального процесса):

Механическая мощность турбокомпрессора:

Графическое представление процесса сжатия в турбокомпрессоре.


6.4 Паросиловой цикл Ренкина

Исходные данные:

Давление водяного пара на входе в турбину P1=102 бар

Температура водяного пара на входе в турбину t1=463˚C

Давление в конденсаторе P2=0,05 бар

Энтропийный КПД турбины

Энтропийный КПД насоса

Параметры водяного пара (по 1-s диаграмме водяного пара):

Допущение: Теплообмен между топочными газами и водой происходит без потерь тепла.


6.4.1 Аналитический расчет парасилового цикла

Расчет проводится как для реального цикла, так и для теоретического.

1-2s - Изоэнтропный процесс расширения в турбине.

1-2 - Реальный процесс расширения в турбине.

2s-3’ – Теоретический процесс конденсации.

2-3 – Реальный процесс конденсации.


3’-4s – Изоэнтропный процесс в насосе.

3’-4 – Реальный процесс в насосе.

4s-1 – Теоретический процесс в котле-утилизаторе.

4-1 – Реальный процесс в котле-утилизаторе.


Теплота и работа обратимого и необратимого циклов.

Эти таблицы показывают справедливость 1 закона термодинамики для циклических процессов: qц=lц .

6.4.2 Определение механической мощности парасилового цикла

Энергетический баланс:

Зависимость энтальпии топочных газов от температуры в расчете на 1 кмоль топлива (без учета диссоциации продуктов сгорания):

(см. )

Разность энтальпий топочных газов в расчете на 1 кмоль топлива:

Расход топлива:

(см. )

Тепловая мощность парогенератора


В реальном цикле

Расход воды:

Механическая мощность паросилового цикла (паротурбинной установки):

6.4.3 Определение термического КПД цикла

КПД обратимого и необратимого циклов составят соответственно:

, что очевидно.

6.4.4 Определение эксергетического КПД парасилового цикла

Эксергетический КПД цикла определяется соотношением

Графическое представление паросилового цикла

Выводы

В данной работе рассмотрена упрощенная схема процесса конверсии метана. Рассчитаны основные составляющие этой схемы. Учтены технологические особенности данного процесса. Определены КПД, характеризующие процессы, протекающие в данной системе. Полученные результаты удовлетворяют физическим представлениям.

В данной ЭХТС производится утилизация тепла топочных газов; эта ЭХТС не требует энергозатрат, т.к. механическая мощность паротурбинной установки достаточно велика для удовлетворения потребностей данной ЭХТС в механической работе (турбокомпрессор, питательный насос) и в электроэнергии (насос, подающий холодную воду в водооборотном цикле); возможно также получение некоторого дополнительного количества электроэнергии, которую можно использовать в различных целях.


Список литературы

1. Смирнов В.А., Шибаева Л.Ф., Миносьянц С.В. Термодинамические расчеты основных процессов в энерго-химико-технологических системах. Учебное пособие. – М.: МХТИ им. Д.И. Менделеева, 1988. – 68 с.

2. Павлов К.Ф., Романков П.Г., Носков А.А. Примеры и задачи по курсу процессов и аппаратов химической технологии. Учебное пособие для вузов / Под ред. чл.-корр. АН СССР П.Г. Романкова. – 10-е изд., перераб. и доп. – Л.: Химия, 1987. – 576 с., ил.