Смекни!
smekni.com

Радикальная сополимеризация акрилат- и метакрилатгуанидинов с виниловыми мономерами (стр. 15 из 20)

3.3.3 Термические свойства синтезированных сополимеров

Стойкость соединений, в том числе полимерных, к воздействию различных температур является важной характеристикой веществ, которые предполагается использовать в составе различных композиций.

Для изучения термофизических свойств синтезированных продуктов и исходных реагентов использовали программно-аппаратный комплекс с пакетом компьютерных программ, предназначенных для количественной обработки дериватограмм (кривых Г, TG, DTG, DTA), разработанный в Институте химии растворов РАН (г. Иваново) для измерения и регистрации выходных сигналов от датчиков дериватографа 1000D (MOM, Венгрия).

На рис. 22 представлены ТГ-кривые сополимера АА с МАГ 50:50 на воздухе. Потеря веса сополимером наблюдаются при температуре 150 °С; по-видимому, это связано с потерей воды и удалением летучих примесей. Уменьшение массы на 10% наблюдается при температуре 150 ºС. Скорость термического и термоокислительного разложения сополимера заметно возрастает при температуре 210 °С. Выше этой температуры можно отметить две стадии разложения: 250-300 °С и 300-390 °С; эндотермический эффект при температуре 390 °С, который при 520 ºС переходит в экзоэфект, отражающий термоокислительную деструкцию полимера. Выше 600 ºС происходит удаление коксовой массы и остается 8% твердого остатка. Общее падение массы составляет 80 %.

Рис.22. Зависимость потери массы от температуры сополимера АА-МАГ (50:50)

а)


б)

Рис. 23. Кривые ДТА(а) и ДТГ (б) сополимера АА-МАГ (50:50)

Рассмотрим термостабильность сополимера с большим содержанием метакрилата гуанидина МАГ-АА (90:10)

Как видно на кривой ТГ, потеря массы, связанная с удалением воды и летучих примесей из образца, наблюдается в области температур от 150 до 240 ºС, при этом потеря массы составляет до 15 %. Далее идет стремительное уменьшение массы до температуры 570 ºС. На этом участке происходит разложение гуанидиновых остатков, в результате дальнейшее разложение идет с образованием летучих продуктов, что приводит к вспениванию исследуемых образцов. При этой температуре на кривой ДТА наблюдается экзотермический эффект, показывающий полное термоокисление полимера. После удаления коксовой массы остается 20 % твердого остатка.


Рис. 24. Зависимость потери массы от температуры сополимера АА-МАГ (90:10)

При анализе кривых ТГ выявлено, что масса твердого остатка выше в образцах с большим содержанием МАГ.

По данным ДСК оказалось, что в образцах гомо- и сополимеров, взятых для исследований, воды около 20%, т.е. такая характеристика термостабильности соединений, как потеря 10% массы, требует корректировки данных ДТА для полимерных соединений. При этом следует отметить, что вода в сополимерах связана прочнее, чем в ПМАГ: при исследовании методом ДСК прогрев образцов ПМАГ до температуры 150 °С с последующим охлаждением и новым нагревом показал, что вода из данного соединения удалена полностью, чего не удалось добиться для сополимеров.

Наиболее стабильными оказались образцы сополимеров, содержащих большее количество акриламида. Например, потеря 30 % массы для сополимера АА-МАГ (90:10) наблюдается при 300 °С, а для сополимера 30:70 – при 280 °С. Это, вероятно связано с более сложным строением сополимеров с большим содержанием метакрилата гуанидина. По данным работы [171] при термоокислении производных мочевины, в том числе и гуанидина, могут выделяться водород, угарный газ, углекислый газ, метан.


а)

б)

Рис. 25. Кривые ДТА(а) и ДТГ (б) сополимера АА-МАГ (10:90)

С учетом возможного термолиза гуанидина с образованием карбамида суммарная реакция термодеструкции гуанидинового остатка упрощенно может быть представлена следующей реакцией:

72СО(NH2)2 → 45NH3 + 15CO + 15H2O + 5N2+ 4CO2 + 17(NH2)2(CO)2NH +19NH2CN

Сополимеры акриламида оказались более термостабильными, чем полиакриламид. Полиакриламид термически устойчив до 130 °С, а потеря 30% массы наблюдается уже при температуре 170 °С. При более высоких температурах начинается деструкция полимера, которая, как известно [172], сопровождается выделением аммиака, образованием имидных групп, возникновением внутри- и межмолекулярных связей по типу:

Таким образом, при сравнении термостабильности полимерных продуктов можно отметить, что более стабильными во всем интервале температур оказались сополимеры в сравнении с гомополимерами.

Данные термофизических исследований синтезированных сополимеров АГ и МАГ с ММГ суммированы в табл. 17 и 18.

Таблица 17

Термофизические свойства исходных мономеров и сополимеров МАГ-ММГ

СополимерыМАГ: ММГ кривая ДТА, T пл кривая. ДТГинтервал разложен. Ум-е массына 10% Ум-е массына 20% Ум-е массына 30% Мост.
1 2 3 4 5 6 7
90:10 200350500540 80280400520 110 270 300 5%
60:40 370500550 80260280350410515 100 250 290 7%
50:50 310370490540 80270340400520 100 250 290 8%
10:90 150550640 80550 200 410 470 12%
МАГ 167168 202-242270-357 222 320 370 9%
ММГ 110150175240290-390610740 75-155155-170170-240240-550 150 180 230 6%

Таблица 18

Термофизические свойства исходных мономеров и сополимеров АГ – ММГ

Образец кривая ДТА Tпл кривая ДТГинтервал разложен. Уменьшение массына 10% Уменьшение массына 20% Уменьшение массына 30% Мост.
1 2 3 4 5 6 7
АГ 90270370540640 90-160160-205205-260260-350350-450450-570 70 100 230 6%
ММГ 110150175240290-390610740 75-155155-170170-240240-550 150 180 230 8%
АГ–ММГ50:50 170270350600 90-185185-265265-330330-520 150 110 250 12%
АГ–ММГ70:30 270360560600 170-200200-250250-440440-560 100 200 250 10%

Таким образом, исследование термостабильности сополимеров показало, что их термические свойства зависят от состава и значительно выше термических характеристик исходных сомономеров и гомополимеров.

3.4. Исследование бактерицидных и токсикологических свойств новых сополимеров акрилат- и метакрилатгуанидина

В настоящий момент трудно найти группу материалов, на которую микроорганизмы не оказывают разрушающего действия. Жизнедеятельность различных патогенных микробов вызывает не только нежелательные изменения структурных и функциональных характеристик материалов и изделий, но они также реализуют свое губительное действие внутри живых клеток организма. В связи с этим, разработка новых биоцидных препаратов, несомненно, является актуальной задачей.

Учитывая, что под собственной физилогической активностью полимеров обычно понимают активность, которая связана с полимерным состоянием и не свойственна низкомолекулярным аналогам или мономерам [174], механизмы проявления собственной физиологической активности могут включать в себя как важнейшую составляющую физические эффекты, связанные с большой массой, осмотическим давлением, конформационными перестройками и др., а также могут быть связаны с межмолекулярными взаимодействиями и с биополимерами организма. Многие биополимеры организма являются полианионами (белки, нуклеиновые кислоты, ряд полисахаридов), а биомембраны также имеют суммарный отрицательный заряд. Взаимодействие между противоположно заряженными полиэлектролитами протекают кооперативно, причем образующиеся в результате поликомплексы достаточно прочны. Известно, что наибольшее значение имеют при таких взаимодействиях плотность заряда и молекулярная масса [174]. Если же говорить о биоцидных свойствах, то важную роль в этом случае играет знание механизма действия.

Последовательность элементарных актов летального действия полиэлектролитов на бактериальные клетки может быть представлена следующим образом [194]:

1) адсорбция поликатиона на поверхности бактериальной клетки;

2) диффузия через клеточную стенку;

3) связывание с цитоплазматической мембраной;

4) разрушение или дестабилизация цитоплазматической мембраны;

5) выделение из клетки компонентов цитоплазмы;

6) гибель клетки.

В первую очередь, это касается поликатионов, так как биомембраны имеют отрицательный суммарный заряд, хотя, отрицательно заряженные в целом клеточные мембраны имеют изолированные поликатионные области, на которых могут сорбироваться полианионы [195].

Все вышесказанное свидетельствует о перспективности и принципиальной возможность использования в качестве биоцидных препаратов синтезированных нами гуанидинсодержащих полимерных веществ. Отметим, что эти полимеры отвечают ряду требований, которые предъявляются к современным препаратам подобного рода: хорошая растворимость в воде и физиологическом растворе (1%-е растворы полимеров имеют рН =6,5-7,0); растворы бесцветны, не имеют запаха, не вызывают разрушения обрабатываемых материалов, а также полимерная природа этих соединений способствует отсутствию ингаляционной токсичности и образованию на обработанных поверхностях длительно сохраняющейся полимерной пленки, обеспечивающей пролонгированный биоцидный эффект.