Смекни!
smekni.com

Искусственное выращивание рубинов (стр. 2 из 5)

Кристаллы, выращенные по методу Вернейля, известны как були (бульки), по-видимому, в связи с тем, что первоначально они имели примерно округлую форму. (Термин «буля» широко использовался при описании популярной во Франции игры, в которой тяжелые шары диаметром около 10 см стараются подкатить как можно ближе к Цели). Этот термин, введенный Годеном и применявшийся Вернейлем, теперь стал обычным в лексиконе специалистов по выращиванию кристаллов и геммологов, несмотря на то, что кристаллы, которые выращивают сейчас, имеют цилиндрическую форму.

В 1900 г. ассистент Вернейля Марк Паккье демонстрирует рубины на Всемирной выставке в Париже. Отчет о камнях написал геммолог И. Фридлендер, который пришел к выводу, что рубины получены новым методом, а не по технологии женевских. Рубины на Парижской выставке пользовались большим спросом, хотя детали процесса не раскрывались до 1902 г.

Начиная свой первый письменный отчет, который был опубликован спустя два года, Вернейль отмечает, что Годен применял слишком высокие температуры и поэтому у него получались непрозрачные кристаллы. Новая идея Вернейля заключалась в применении вертикальной горелки с подачей порошка глинозема в пламя через поток кислорода. Порошок встряхивается в потоке газа под действием вибратора с электрическим приводом. Использование газонепроницаемого резинового сальника позволяет передавать толчки вибратора к сосуду, содержащему порошок глинозема, без утечки кислорода. В холодной части пламени помещен керамический штифт, на котором собираются капли жидкого глинозема, образующиеся при плавлении порошка, просыпающегося через горячую зону пламени. Пламя окружается керамическим муфелем, играющим роль изолятора и защищающим растущую булю от «сквозняков». Этот муфель снабжен смотровым окном, которое в оригинальном аппарате Вернейля заделывалось слюдой. Чрезмерный нагрев верхней части аппарата за счет потока тепла из горячей зоны предотвращается применением водяного охлаждения.

В начальной стадии роста були порошок, попадая на штифт, затвердевает и образует конус из материала относительно невысокой плотности. В дальнейшем конус перемещают в горячую зону пламени, где его вершина начинает плавиться. В этот момент образуется несколько кристаллов, но один из них ориентирован в направлении наибольшей скорости роста. Он подавляет рост остальных кристаллов и служит затравкой для развивающейся були. На ранней стадии роста чрезвычайно важно мастерство оператора, поскольку во время селекции кристаллов может понадобиться регулировка температуры пламени или скорости подачи порошка. После того как в центральной части начнется преобладающий рост одного кристалла, чтобы увеличить диаметр були повышают скорость подачи питающего порошка и постепенно увеличивают температуру пламени регулировкой скорости потока кислорода. Верхняя поверхность були становится округлой, и на нее подают свежие порции глинозема в виде падающих капель расплава. Далее подставку со штифтом опускают со скоростью, соответствующей скорости роста були.

Наиболее важным условием для выращивания кристаллов высокого качества является равномерная подача порошка, поэтому большие усилия тратятся на приготовление питающего материала с тем, чтобы он обладал хорошей сыпучестью. Если порошок слишком грубый, внедрение крупных холодных частичек может вызвать затвердевание тонкого расплавленного слоя. Тогда зарождается много мелких кристаллов и буля утрачивает структуру монокристалла. Применение слишком мелкого порошка связано с опасностью испарения глинозема в пламени. Оптимальные размеры частиц лежат в субмикронном интервале (меньше тысячных долей миллиметра). Частицы должны иметь правильную форму, так как только в этом случае они одинаково реагируют на воздействие вибратора. Вернейль получал глинозем из аммониевых квасцов, содержащих около 2,5% примеси хромовых квасцов. (Эта концентрация хрома обеспечивала получение камней красного цвета.) Порошок такого состава нагревался до разложения квасцов и образования окислов, которые измельчались и просеивались через проволочное сито для селекции частиц необходимого размера.

Вернейль в течение 2 часов выращивал були весом 2,5—3 г (12—15 карат). Були были округлой формы, и некоторые из них имели диаметр 5—6 мм. Более детальное описание процесса с чертежами аппарата содержится в публикации 1904 г. Этот аппарат вместе с первыми выращенными таким способом кристаллами теперь выставлен в Школе инженерного искусства и ремесел в Париже. Вернейль занимался также проблемой вибратора, который стряхивает порошок в поток кислорода, и позднее заменил его молоточком, работающим от мотора. Это простое и разумное приспособление используется и в большинстве современных аппаратов, применяемых для выпуска ком­мерческой продукции.

Из описаний, опубликованных Вернейлем, ясно, что он был в основном доволен качеством полученных им рубинов, которые облада­ли «восхитительной» флуоресценцией, той же твердостью, что и природные рубины, и были пригодны для высококлассной полировки. Однако ему не было известно, что искусственные рубины отличаются от природных камней вариациями интенсивности окраски и присут­ствием газовых пузырьков, возникающих тогда, когда содержание кислорода в пламени не поддерживается на необходимом довольно низком уровне.

После публикации 1904 г. Вернейль направляет свои усилия на получение сапфира. Тогда не было известно, какой элемент обусловливает синий цвет этого камня, однако ему пригодились сведения о том, что природным камням этот цвет придает совместное присутствие окислов железа и титана. В это время Вернейль работал консультантом фирмы «Л. Хеллер и сын» в Нью-Йорке и Париже. В его сапфирах содержались добавки 1,5% окиси железа и 0,5% окиси титана вместо окиси хрома, используемой в рубинах. Синяя окраска кристаллов обусловлена довольно сложным механизмом. Обычно цвет драгоценных камней связан с поглощением света характерной длины волны определенным элементом, особенно так называемыми переходными элементами, такими, как железо, кобальт, никель и хром. Если из спектра белого света удалить определенную полосу цветов, то свет, попадающий в глаз, будет окрашен в так называемый дополнительный цвет. Например, рубины потому красного цвета, что хром в кристал­лической решетке корунда поглощает зеленый свет. Чтобы сапфир приобрел синий цвет, необходимо поглощение желто-оранжевого света. Такое поглощение имеет место, когда происходит электронный «скачок» внутри кристалла от атомов железа к атомам титана. Поэтому для окраски кристалла в синий цвет требуется совместное присутствие железа и титана.

В 1911 г. были опубликованы патенты на выращивание сапфира, в последнем из которых содержались сведения об очистке от пузырьковых пятнышек, о кривых линиях роста и о растрескивании кристал­лов — типичного явления для синтетических сапфиров. В 1913 г. годовой объем производства искусственного сапфира достиг 6 млн. карат (1200 кг), а рубина—10 млн. карат (2000 кг). Вернейль, благодаря которому это стало возможным, умер 13 апреля того же года в возрасте 57 лет.

МЕТОД ВЕРНЕЙЛЯ НА СОВРЕМЕННОМ ЭТАПЕ

Метод Вернейля, называемый иначе методом плавления в пламени, относится к методам кристаллизации с ограниченной зоной расплава (рис. 3). Он заключается в том, что вещество в виде порошка (раз­мер частиц 2—100 мкм) сыплется из бункера через газовую горелку и попадает на верхний оплавленный торец монокристаллической затравки, медленно опус­кающейся с помощью специального механизма. Пролетая через кислородно-водородное пламя, частицы шихты оплавляются и попадают в тонкую (тол­щиной ~ 0,1 мм) пленку расплава. Так как затравка медленно опускается, то пленка расплава кристаллизуется с нужной скоростью, постоянно попол­няясь сверху. При согласованном расходе шихты, водорода и кислорода и скорости опускания затравки толщина пленки поддерживается практиче­ски постоянной. На рис 4 приведена фотография установки КАУ-1 для кристаллизации по методу Вернейля. Эта установка позволяет выращивать кристаллы в форме стержней диаметром до 20 мм и длиной до 500 мм (рис.5). С целью умень­шения остаточных напряжений в кристаллах разработаны различные конструкции газовых горелок, создающие дополнительный обогрев кри­сталла при его росте. В этом случае диаметр кристалла может достигать 40 мм.

Распространение метода Вернейля связано с успешным его применением для выращивания монокристаллов рубина, лейкосапфира, алюмомагниевой шпинели MgAl2O4 и рутила ТiO2.

Метод Вернейля обладает рядом преимуществ, среди которых следует вы­делить:

- отсутствие контейнера, в результате чего снимаются проблемы физико-химического взаимодействия расплава с материалом контейнера, а также проблема возникновения остаточных напряжений из-за упругого воздействия стенок контейнера;

- возможность проведения процесса кристаллизации в области 2000° С на воздухе, причем окислительно-восстановительный потенциал атмосферы кристаллизации регулируется за счет изменения относительного содержания кислорода и водорода в пламени;

- техническую простоту и доступность наблюдения за ростом кристаллов.

Метод Вернейля, однако, имеет определенные недостатки, к которым сле­дует отнести:

- трудность подбора оптимального соотношения между скоростью опуска­ния затравки, подачей шихты и расходом рабочих газов;

- возможность попадания в расплав примесей из рабочих газов, поскольку расход их значителен (02 0,7 м3/ч, Н2 1,5—2 м3/ч), а также из воздуха и ке­рамики печи;

- развитие высоких температурных градиентов в зоне кристаллизации (30—50 град/мм), способствующих возникновению в кристаллах больших внутренних напряжений (до 10—15 кГ/мм2).

Метод Вернейля технически просто позволяет видоизменять форму расту­щего кристалла. Например, несоосность горелки и механизма перемещения позволяет выращивать кристаллы в форме труб (рис. 6, а). Этот способ позволяет также получать керамические трубы, используемые для изготов­ления муфелей печи аппарата Вернейля.