В контактном методе получения серной кислоты процесс окисления
в проводят на твердых катализаторах.Триоксид серы переводят в серную кислоту на последней стадии процесса – абсорбции триоксида серы, которую упрощенно можно представить уравнением реакции (6).
При проведении процесса по нитрозному (башенному) методу в качестве переносчика кислорода используют оксиды азота.
Окисление диоксида серы осуществляется в жидкой фазе и конечным продуктом является серная кислота:
(8)В наше время чаще используется метод контактного окисления, т.к. он имеет большую интенсивность производства.
2 Физико-химические основы процесса нитрозного способа
2.1 Описание основных реакций с точки зрения физической химии
Из записи реакции (7) видно, что она протекает с уменьшением объёма и с выделением тепла. Значит повышением Р и понижением Т мы добьёмся смещения равновесия в правую сторону.
Зависимость lgKp представлена в таблице. На практике, в производстве, температура в данных реакторах поддерживается на уровне ниже 200 градусов Цельсия. Данный температурный режим даёт нам практически полный переход в правую часть нашей реакции.
Отсюда видно следующее: с повышением температуры скорость реакции понижается. Либо уменьшается вероятность столкновения 3 молекул, либо реакция идёт через образование активированного комплекса, при чём распад комплекса связан с температурой и при её повышении распад комплекса снова идёт в сторону образования исходных соединений.
(9)Реакция обратима.
Трёхокись азота стабильна лишь при температуре -21° C как в жидком, так и в твёрдом состоянии. Скорость этой реакции очень велика и её равновесие наступает очень быстро.
Таблица 3 – Зависимость lgKp от температуры в реакции (7)
Температура | lg Kp | Температура | lg Kp |
0 20 50 60 90 100 150 200 225.9 246.5 | -14.11607 -12.72433 -10.85585 -10.31135 -8.82901 -8.38859 -6.49872 -5.01424 -3.735 | 250 300 350 400 450 500 550 600 700 750 | -3.79406 -2.79162 -1.94897 -1.23207 -0.61348 -0.05470 0.49839 0.81692 1.52369 1.8147 |
Из расчётов Кр получается, что процент недиссоциированной
невелик: при 25К он равен 10,5, при 50К - 6,8, при 100К - 1,2.(10)
Согласно теоретическим расчетам, lgKp не сильно зависит от температуры. Отсюда видно, что от повышения температуры, скорость образования N2O4 не слишком сильно (относительно) зависит. Однако на деле в камерных и башенных системах происходит следующее:
1) В реакционной зоне NO2 всё время восстанавливается до NO. Поэтому NO гораздо больше, чем NO2.
2) При низких температурах парциальное давление окислов азота обычно мало (не выше 0,015 – 0,01 атм.).
3) В условиях башен, если NO2 связывается с NO, то образовавшийся N2O3 тут же абсорбируется раствором кислоты.
Исходя из этого, можно судить об очень малой концентрации посторонних окислов азота в реакционном пространстве.
(11)Однако, исходя из экспериментальных данных, В.Н. Шульц установил обратную зависимость константы скорости реакции от Т:
194T - К = 3,95 … 99,6T - К = 3,3 … 81,4T - К = 2,7
Т.е. при повышении температуры равновесие смещается вправо [2].
2.2 Сведение всех результатов в общее теоретическое обоснование процесса
1) Реакции (7) и (10) в условиях температур камерно-башенного синтеза идут в исключительно благоприятную, для серной кислоты, сторону.
2) Это благоприятное течение обстоятельств усиливается тем, что NO2 всё время потребляется по (10) реакции, а продукт (10) реакции SO3 постоянно абсорбируется жидкой фазой из газовой.
3) Скорость реакции (7) понижается с повышением температуры. Скорость реакции (4) повышается, с повышением температуры.
4) В продукционной зоне концентрация NO2 всегда составляет 0,25 от общего количества других окислов азота. Это происходит из-за того, что скорость реакции (7) меньше чем скорости всех остальных реакций и в особенности на (10).
5) Равновесия реакций (8) и (9) наступают моментально. Их концентрация крайне мала, по отношению к основным продуктам реакций.
6) Исходя из рассмотренных данных, температура в реакционной зоне должна быть по возможности низкой (не более 200°С).
3 Физико-химические основы процесса окисления сернистого ангидрида при получении серной кислоты контактным способом
Для получения серной кислоты контактным способом сернистый ангидрид необходимо окислить до серного ангидрида (1), а затем соединить его с водой (6).
Однако сернистый ангидрид
непосредственно с кислородом не реагирует даже при высоких температурах. В присутствии же катализаторов скорость окисления кислородом увеличивается и в отдельных случаях становится весьма большой.3.1 Влияние основных параметров на скорость процесса
Реакция окисления оксида серы (IV) в оксид серы (VI)-(1), лежащая в основе процесса контактирования обжигового газа, представляет собой гетерогенно-каталитическую, обратимую, экзотермическую реакцию.
Тепловой эффект реакции зависит от температуры и равен 96,05 кДж при 25 оС и около 93 кДж при температуре контактирования. Система «SО2 – О2 – SО3» характеризуется состоянием равновесия в ней и скоростью окисления оксида серы (IV), от которых зависит суммарный результат процесса.
Слева направо реакция протекает с выделением тепла и с уменьшением числа молекул (из 2 молекул
и 1 молекулы образуются 2 молекулы ). Так как грамм-молекулы различных газов занимают одинаковые объемы, равные при нормальных условиях 22,4 л, то из суммы трех объемов сернистого ангидрида и кислорода получаются два объема серного ангидрида, т. е. реакция протекает с уменьшением объема.Особенностью обратимых реакций является то, что при данных температуре и давлении они протекают до известного предела, называемого состоянием подвижного равновесия. Вначале между
и будет происходить прямая реакция, т. е. направленная вправо в сторону образования ; но по мере образования постепенно усиливается обратимая реакция, т. е. реакция разложения до и . Наступит, наконец, такой момент, когда количество , образующегося в единицу времени в результате прямой реакции, будет равняться количеству , разлагающемуся в результате обратимой реакции. Это и будет состоянием подвижного равновесия. Если изменить давление и температуру, то система выйдет из состояния равновесия и реакция в зависимости от изменения условий будет протекать в ту или иную сторону. Но и для новых условий наступит свое состояние подвижного равновесия.По принципу Ле Шателье следует, что для обратимых реакций понижение температуры будет стимулировать реакцию, идущую в сторону выделения тепла, а повышение давления — реакцию, едущую в сторону уменьшения объема. Следовательно, для рассматриваемой реакции понижение температуры и повышение давления будут благоприятно влиять на полноту окисления
в .Если для проведения процесса окисления
в взять определенные условия, то очевидно, что максимальное окисление будет достигнуто в момент, когда наступит состояние подвижного равновесия. Эта предельная для данных условий степень окисления называется теоретически возможной, или теоретической степенью окисления. В практических условиях теоретическая степень окисления в обычно не достигается, но реакция очень близко подходит к состоянию подвижного равновесия.