Найімовірніше, спочатку відбувається ацилування гідразида (2.1) діетилоксалатом з утворенням сполуки (А), яка за одним із шляхів (шлях І) в умовах реакції переацилується, утворюючи естер (Б). Декарбоксилування останнього приводить до кінцевого продукту реакції (3.2). За іншим ймовірним шляхом (шлях ІІ) сполука А зазнає внутрішньо-молекулярного ацилювання з утворенням інтермедіату В, який через проміжні продукти Г, Д перетворюється в хіназолінон (3.2). З метою експериментальної перевірки можливості протікання реакції по першому шляху нами була синтезована сполука Б, яку ми спробували декарбоксилювати в умовах реакції. Виявилось, що навіть при більш жорстких умовах (збільшення потужності опромінення і часу перебігу до 10 хв.) була виділена вихідна речовина, тому більш вірогідним із запропонованих можна вважати шлях II.
Для подальших досліджень хіназолон (3.2) одержували нагріванням антранілогідразида (2.1) в середовищі мурашиної кислоти.
При недовготривалому кип’ятінні хіназолінона (3.2) з янтарним ангідридом в крижаній оцтовій кислоті, був виділений 3-сукцинімідо-4-оксо-3,4-дигідро-хіназолін (3.3). Реакція перебігає з утворенням проміжної сполуки – кислоти (3.4a), яка в результаті циклодегідратації перетворюється в імід (3.3), при цьому відмічаємо легкість, з якою відбувається замикання імідного циклу. Навіть слабке нагрівання хіназолінону (3.2) з янтарним ангідридом дає суміш кислоти (3.4a) і іміда (3.3) з перевагою в ній останнього. При проведенні реакції ацилювания без нагрівання (перемішування, 48 год.) з реакційної суміші знову була виділена суміш вихідної речовини (3.2) і кислоти (3.4a). Тому одержувати N-4-оксо-3,4-дигідрохіназолін-3-іл)карбомоїл-пропанову кислоту (3.4a) було запропоновано лужним гідролізом іміду (3.3).
Імід (3.3) легко вступає в SN-реакції: при кип’ятінні його в метанолі з метилатом натрію був виділений естер (3.4б), а при нагріванні з аліфатичними амінами в етанолі було одержано N-заміщені аміди N′-(4-оксо-3,4-дигідрохіназолін-3-іл)карбамоїлпропанової кислоти (3.4в,г). Взаємодією іміда (3.3) з гідразингідратом в середовищі діоксану синтезовано гідразид (3.4д). При кип’ятінні гідразида (3.4д) з ацетоном або ароматичними альдегідами в середовищі ДМФА були виділені відповідні гідразони (3.5а-в).
Для синтезу біспохідних 4-оксохіназоліна (3.7а,б) використовували сполуку (3.6), яку одержували нагріванням іміда (3.3) і гідразида (2.1) в середовищі діоксану або сплавленням вихідних речовин. Кращі результати спостерігалися при проведенні реакції в розчиннику. Циклізацією фрагмента антранілогідразида в молекулі сполуки (3.6) отримували відповідні біспохідні. При нагріванні сполуки (3.6) в середовищі мурашиної кислоти утворюється N,N′-ди(4-оксо-3,4-дигідрохіназолін-3-іл)сукцинамід (3.7а). Крім того, сукцинамід (3.7a) був також одержаний сплавленням іміда (3.3) з хіназоліноном (3.2). В цьому випадку реакція перебігала з більш низьким виходом, а підвищення температури або часу нагрівання призводило до руйнування речовин. Спроба провести реакцію між сполуками (3.2) і (3.3) в розчиннику успіху не мала: вихідні речовини були виділені при кип’ятінні реагентів (3.2) і (3.3) в етанолі, діоксані, оцтовій кислоті і в ДМФА. При нагріванні сполуки (3.6) з еквімолярною кількістю оцтового ангідриду в середовищі крижаної оцтової кислоти отримано біспохідне (3.7б).
4. Реакції етилового естеру оксамінової кислоти і діалкілоксалатів з похідними антранілової кислоти
В літературі описаний синтез етилового естеру 3-аміно-4-оксо-3,4-дигідрохіназолін-2-карбонової кислоти (3.9а) нагріванням антранілогідразида (2.1) з діетилоксалатом при 180ºС потягом 6 годин і подальшою відгонкою діетилоксалату у вакуумі. Ми спробували одержати амід 3-аміно-4-оксо-3,4-дигідрохіназолін-2-карбонової кислоти взаємодією антранілогідразиду (2.1) з етиловим естером оксамінової кислоти (оксаметаном), в якості розчинника використовували оцтову кислоту. Результат реакції виявився несподіваним – із реакційної суміші був виділений етиловий естер (3.9а), тобто оксаметан реагував не естерною, а амідною групою. Використання подвійної кількості оксаметана в цій реакції не змінило її результат і не впливало на вихід продукту реакції. Вперше було виявлено реакцію естерів оксамінової кислоти з N-нуклеофілами, яка протікає за амідною групою, без участі естерної.
При нагріванні кислоти (3.8б) і антраніламіда (3.8г) з оксаметаном були одержані етилові естери 2-карбоксіоксанілової (3.10) та 4-оксо-3,4-дигідрохіназолін-2-карбонової кислот (3.9в) відповідно, тобто оксаметан і в цих випадках вступав в реакцію амідним фрагментом молекули.
У випадку з метилантранілатом (3.8в) результат реакції змінився і було виділено амід2-метоксикарбонілоксанілової кислоти (3.11), тобто більш реакційноздатною виявилась естерна група оксаметану. Можна припустити, що вирішальним фактором, який визначає напрямок реакції утворення аміда (3.11), є відсутність в метоксикарбонільній групі метилантранілата (3.8в) атомів водню, здатних утворювати внутрішньомолекулярні водневі зв’язки, як у випадку антранілової кислоти (3.8б) і інших її похідних (3.8а,г). Очевидно, водневі зв’язки впливають на формування структури перехідного комплексу та природу групи, що відщеплюється.
Дослідження реакції ацилювання похідних антранілової кислоти діалкілоксалатами дозволило розробити менш трудомісткий метод синтезу естерів (3.9а,б).
Етиловий і метиловий естери3-аміно-4-оксо-3,4-дигідрохіназолін-2-карбонової кислоти (3.9а) та (3.9б) відповідно отримували кип’ятінням антранілогідразиду (2.1) і відповідного діалкілоксалату (Alk = Et або Ме) протягом 30 хв. Разом з тим, виділити естери з іншими алкільними залишками (в реакції були використані (COОAlk)2, де Alk = н-Pr, н-Bu, н-C6H13, н-С5Н11) в цих умовах нам не вдалося, навіть при збільшенні часу перебігу реакції. Вірогідно, це пов’язано з більш низькою реакційною здатністю таких естерів. Реакція антранілогідразиду (2.1) з етоксалілхлоридом в оцтовій кислоті в присутності триетиламіну давала 3‑N-ацетиламіно-2-карбетокси-4-оксо-3,4-дигідрохіназолін (3.13).
3.8, X = NHNH2 (а – 2.1), OH (б), OMe (в), NH2 (г); 3.9, R = NH2, Alk = Et (a), Me (б), R = H, Alk = Et (в), Me (г);3.12, Alk = Et (a), Me (б); 3.14, R = H (a), NH2 (б).
В крижаній оцтовій кислоті антраніламід (3.8г) з діетилоксалатом в залежності від часу протікання реакції дає естер (3.9в) і етиловий естер 2‑карбамоїлоксанілової кислоти (3.12а) або їх суміш, при використанні диметилоксалату в реакції утворювався метиловий естер 4-оксо-3,4-ди-гідрохіназолін-2-карбонової кислоти (3.9г).
В реакції антраніламіду (3.8г) з діетилоксалатом в мурашиній кислоті був виділений 4-оксо-3,4-дигідрохіназолін (3.14а). Це мало б свідчити про те, що в реакції мурашина кислота більш реакційноздатна, ніж діетилоксалат. Однак, це виявилось не так. Намагаючись встановити оптимальний час проведення реакції, ми скоротили час її протікання з 30 до 10 хв., і тоді з реакційного середовища був виділений естер (3.12а). Подальше нагрівання його в мурашиній кислоті приводило до (3.14а). Все це дозволило нам зробити висновок про те, що спочатку в реакцію вступає діетилоксалат, і утворений естер (3.12а) потім зазнає переацилювання, що приводить до виділення продукту (3.14а).
4-Оксо-3,4-дигідрохіназолін (3.14а) та 3-аміно-4-оксо-3,4-дигідрохіназолін (3.14б) були одержані також при мікрохвильовому опроміненні суміші антраніламіду (3.8г) або антранілогідразиду (2.1) з відповідними діалкілоксалатами.
5. Дослідження біологічної дії похідних 3-аміно-4-оксо-3,4-дигідрохіназоліну та гетероциклічних сполук на їх основі
Дослідження біологічних властивостей синтезованих похідних 3-аміно-4-оксо-3,4-дигідрохіназоліну проводили за визнаною схемою: дослідження біологічних властивостей речовин з використанням теоретичного прогнозу та експериментальних даних у системі “хімічна структура – біологічна дія”. Такий підхід був застосований нами при дослідженні похідних 3-аміно-4-оксо-3,4-дигідро-хіназоліну.
Для прогнозу спектру біологічної активності за структурною формулою синтезованих сполук була використана комп’ютерна програма PASS (Prediction of Activity Spectra for Substances), яка дає можливість оцінювати фармакологічні ефекти, механізми дії та специфічну токсичність сполук та забезпечує прогнозування всього спектру активності сполуки, включаючи як основну дію, так і можливі побічні ефекти.
За допомогою програми PASS для визначення напрямку подальших біологічних досліджень був проаналізований одержаний PASS-пакет ймовірної біологічної дії сполук, які містять фрагмент 4-оксо-3,4-дигідрохіназоліну. Це дозволило спланувати цілеспрямований пошук серед синтезованих сполук речовин з антимікробною, протизапальною та анальгетичною діями.
Протимікробну дію синтезованих сполук досліджували на кафедрі мікробіології НФаУ під керівництвом проф. І.Л. Дикого за методом двократних серійних розведень. Дослідження проводили у бульйоні Хоттінгера (рН 7,2...4,7; вміст амінного азоту 120 мг%) на наборі еталонних тест-штамів: Staphylococcus aureus (ATCC 25923), Escherichia coli (ATCC 25922), Pseudomonas aeruginosa (ATCC 25853) и Bacillus subtilis (ATCC 66330), Candidaalbicans (ATCC 885653). Мікробне навантаження становило 105-106 мікробних тіл у 1 мл середовища.
Встановлено, що варіювання замісників у структурі 3-аміно-4-оксо-3,4-дигідрохіназоліну суттєво впливає як на рівень, так і на спектр антимікробної активності. Клінічна мікробіологія стверджує, що найбільш перспективними слід вважати ті синтетичні речовини, які виявляють спрямовану антимікробну дію, за умов такої дії, обмежується або зовсім виключається їх здатність порушувати фізіологічний мікробіоценоз організму з виникненням дезбіозів з проблематичними хіміотерапевтичними вирішеннями.