3.3.1. Вращательные движения определяют важнейшие черты стационарных состояний электронных оболочек и ядер aтомов и молекул. Некоторые приемы теоретического анализа состояний атомно-молекулярных систем особенно наглядно можно исследовать на примере простейшей модели вращения – плоского ротатора. Мы уже рассмотрели замену комплексных орбиталей действительными волновыми функциями, допускающими наглядное графическое представление. Следующий прием - построение гибридных орбиталей, каждая из которых уже не обладает центральной симметрией, а напротив, отличается ярко выраженной концентрацией в некотором выделенном направлении. Заглядывая вперед, отметим, что гибридные электронные орбитали атомов играют важнейшую роль в образовании химических связей.
Эффект гибридизации позволяет наглядно проиллюстрировать применение принципа суперпозиции состояний, чрезвычайно важного для химии и для всей квантовой механики.
3.3.2. Гибридизация – это смешение состояний с различными значениями момента импульса. Например, гибридные орбитали можно образовать из волновых функций σ- и π-типа, но из орбиталей только π-типа – нельзя.
Смешивая орбитали разных уровней, удается построить гибкие формы орбиталей, пригодные для описания каких-либо физических или химических явлений, рассмативая их как возмущение исходных состояний системы. С этой целью образуют линейные комбинации из волновых функций, принадлежащих различным уровням. Энергии гибридизующихся орбиталей различаются, но это отличие должно быть невелико.
3.3.3. На основе исходного набора волновых функций – тройки орбиталей (
), принадлежащих двум низшим ypoвням плоского ротатора, возможны два предельных способа построения гибридов. В первом из них гибридизуются только σ- и лишь одна из двух π-орбиталей, тогда как вторая остается несмешанной. Например, образуем ниже гибрид из σ- πс, не затрагивая πs. Назовем этот тип смешения σπ-гибридизацией. Во втором случае смешиваются все три исходные орбитали, т.е. происходит σπ2-гибридизация. Число гибридных функций всегда равно числу исходных смешивающихся орбиталей.В обоих случаях исходные орбитали образуют ортонормированный базисный набор (2.4) или кратко базис, и в этом смысле совершенно подобны некоторым единичным векторам. Орбитали базисного набора удобно представить в упорядоченном виде вектора-столбца или вектора-строки, вводя при этом унифицированные обозначения
,или равноценно
, где3.3.4. Образование гибридных орбиталей представляет собой смешение исходных базисных орбиталей, т.е. их линейную комбинацию. Численные коэффициенты при базисных функциях определяют их вклады в составе гибрида и, как правило, находятся из простых соображений.
Возможные варианты образования ортонормированных гибридных орбиталей представим схемой:
(3.42) (3.43)В матричной форме эти выражения примут вид:
(3.44)Для каждой из гибридных i-орбиталей алгебраическая связь между коэффициентами при компонентах ортонормированного базиса (в нашем случае
) идентична обычной связи между проекциями ортонормированных векторов: для i=1, 2 i=1, 2, 3, j ≠ iСогласно постулату 4 (уравнение 2.29) квадраты коэффициентов наделены определенным смыслом. Каждый из них определяет вероятность “чистого” исходного состояния в составе смешанного.
3.3.5. Для простоты и определенности образуем такие гибриды, при смешении 2-х волновых функций (σ и πс), вес каждой из них в составе гибридных орбиталей одинаков, т.е. равен 1/2:
.Последнее соотношение приводит к выводу:
(3.45)
откуда для разных значений i=1, 2 получаем равноценные возможности, т.е. два вектора
Следовательно, гибридные орбитали имеют вид:
(3.46)Подставив в (3.46) явные выражения базисных векторов (336) и (3.40), получим гибридные орбитали как функции полярного аргумента:
(3.47)На полярных графиках гибридных орбиталей (рис. 6) наглядно представлена их ориентированность. Основная часть каждой орбитали сконцентрирована в больших лепестках, противоположно направленных в разные стороны от полюса – центра вращения.
3.3.6. Рассмотрим теперь более сложный случай σπ2-гибридных орбиталей. Полагая
и выбирая для сi1 арифметическое значение корня, т.е. , мы неизбежно сохраняем свободу выбора значений сi2 и сi3, которая ограничена только условием . (3.48)Введем тригонометрическую постановку, удовлетворяющую условию (3.48):
, . (3.49)Тогда общее выражение для гибридных орбиталей примет вид:
(3.50)Линейная комбинация орбиталей πс и πs в составе ξi представляет собой также πс-орбиталь, ось которой повернута под углом к исходному координат-ному лучу, так как:
. (3.51)На этом основании из (3.50) получается общая формула для σπ2-гибридных волновых функций:
; i=1, 2, 3Один из трех углов αi можно выбрать произвольно, но остальные будут определяться из условия ортогональности гибридных орбиталей. Без потери общности положим α1=0 и получим
, (3.53) . (3.54)Найдем углы α2,3, используя ортогональность гибридных функций (1.14):
Откуда следует
и с учетом ортонормированности базиса, т.е. ‹σ|σ›=1; ‹σ|πс›=0 (независимо от ориентации πс-функции) получаем уравнение:Совершим равносильные преобразования
В итоге получаем искомое тригонометрическое уравнение
и (3.57). (3.58)
Таким образом, все три гибридные орбитали ориентированны вдоль трех лучей, направленных под углом 1200 друг к другу.
3.3.7. Завершая расчеты волновых функций σπ- и σπ2-гибридов, изобразим полярные диаграммы гибридных орбиталей и уровни энергии.
3.3.8. Покажем, что энергия смешанного гибридного состояния отличается от энергий исходных чистых состояний и является их средневзвешенной величиной. Для расчета используем исходный гамильтониан плоского ротатора, для которого σ- π-орбитали являются собственными функциями.
Расчитывая уровни σπ- и σπ2-гибридов, мы имеем возможность продемонстрировать компактность и простоту математических выкладок, основанных на операторных уравнениях с использованием бра- и кет-символов скалярных произведений – интегралов.
Обратимся к 5-му постулату, на основании которого производится расчет средних значений динамических переменных. Энергия σπ-гибрида равна:
. (3.59)Уровень σπ-гибрида оказался дважды вырожденным и лежащим точно посередине между исходными уровнями σ- и π-орбиталей. При выводе использованно свойство ортонормированности базиса: ‹σ|σ›=1; ‹σ|π› = ‹π|σ› = 0
3.3.9. Энергия σπ2-гибрида рассчитывается аналогично; для краткости записи введем обозначение
и получим: