После стадии денитрации слабая H2SO4 отправляется на стадию концентрирования. В процессе концентрирования разбавленной H2SO4, имеющиеся в ней примеси, в частности, продукты неполного сгорания топлива (когда концентрирование ведется непосредственным соприкосновением упариваемой кислоты с топочными газами), вызывает разложение H2SO4 вследствие ее восстановления до SO4. Восстановление в основном идет за счет углерода, содержащегося в примесях и в топливе по уравнению:
2H2SO4 + С = СО2 + 2SO2 + 2 H2O
За счет этого происходят некоторые потери кислоты при ее упаривании. В процессе разгонки тройной смеси в колонне образуются нитрозные газы, которые поступают на поглощение в абсорберы. Наиболее распространенный способ поглощения нитрозных газов водой с образованием слабой HNO3. На поглощение поступают нитрозные газы различной степени окисления. Окислы азота, содержащиеся в нитрозных газах NO2, N2O4, N2O3реагируют с водой, но монооксид NO не может реагировать с водой и для перевода его в HNO3 следует предварительно окислить его до диоксида азота:
2NO2 + H2O = HNO3 + HNO2 + 116 кДж.
N2O4 + H2O = HNO3 + HNO2 + 59,2 кДж.
N2O3 + H2O = 2HNO3 + 55,6 кДж.
Процесс поглощения нитрозных газов водой связан с растворением в ней диоксида азота, четырехоксида и трикосида азота с образованием HNO3 и азотистой кислоты.
В газовой среде вследствии взаимодействия паров воды с нитрозными газами, также получается HNO3 и азотистая кислота, но в значительном количестве. Образовавшаяся при помощи нитрозных газов азатитсая кислота – малоустойчивое соединение.
2HNO2 = HNO3 + 2NO + H2O - 75,8 кДж
Суммарная реакция образования HNO3:
2NO2 + H2O = HNO2 + HNO3
3HNO2 = HNO3 + 2NO+ 2H2O
____________________________________
3NO2 + H2O = 2HNO3 + NO
N2O3 + H2O = 2HNO2
3HNO2 = HNO3 + H2O + 2NO
_______________________
3N2O3 + H2O = 2HNO3 + 4NO
Так как в нитрозных газах содержится незначительное количество триоксида азота, обычно технологические расчеты производят по NO2. Как видно из формул 2/3 поглощенного диоксида азота идет на образование HNO3, 1/3 его выделяется в виде монооксида азота.
Отсюда следует, что при поглощении водой нитрозных газов невозможно все количество NO2 превратить в HNO3, так как в каждом цикле всегда 1/3 NOх будет выделяться в газовую фазу. Монооксид азота для дальнейшей переработки должен быть окислен кислородом до двуокиси азота по уравнению:
2NO + O2 = 2 NO2
Получающаяся двуокись азота опять реагирует с водой, превращаясь на 2/3 в HNO3, а выделившаяся окись азота снова должна быть окислена. Таким образом, весь процесс поглощения распадается на ряд последовательно протекающих реакций окисления NO в NO2 и образования HNO3 из NO2.
Однако указанные поглощения не являются совершенными и нитрозные газы перед выбросом в атмосферу следует дополнительно очистить от окислов азота. Отсюда следует, что в последнем абсорбере орошение ведется не водой, а концентрированной серной кислотой, которая до 0,003% поглощает окислы азоты, выбрасываемые в атмосферу газы соответствуют санитарным нормам.
В результате поглощения получается нитрозилсерная кислота:
2 H2SO4 +N2O3 = 2 NHSO5 + H2O + 20611 кал.
H2SO4 + 2 NO2 = NHSO5 + HNO3 + 5709 кал.
В данный дипломный проект вводится ряд изменений, направленных на улучшение технологии переработки кислот и очистки отходящих газов.
1. На фазе улова окислов азота и паров азотной кислоты предусматривается внедрение дополнительной абсорбции отходящих газов концентрированной H2SO4. серная кислота реагирует с окислами азота, образуя нитрозилсерную кислоту, которая затем снова направляется в колонну ГБХ для переработки. Отходящие газы с небольшим содержанием окислов азота, выбрасываются в атмосферу.
2. Процесс регенерации отработанной кислоты переведен на автоматизированное управление с применением УВМ, что значительно снижает опасность технологического процесса и повышает качество продукции. Подача кислот в колонну ГБХ автоматизирована. Предусмотрено автоматическое отключение подачи компонентов в случае аварии.
2.6. Расчет материального баланса отделения концентрирования HNO3[1]
Отделение денитрации и концентрирования азотной кислоты.
Состав отработанных кислот, поступающих на денитрацию:
а) от нитрации HNO3 16-26%
H2SO4 46-66%
H2O 18-28%
б) от абсорбционной установки
HNO3 50%
H2O 50%
Исходные данные для расчета
- концентрация крепкой азотной кислоты – 98%
- концентрация серной кислоты, поступающей в колонну – 91%
- концентрация отработанной кислоты, выходящей из колонны – 70%
Расчет составлен на 1 тонну условной отработанной кислоты, поступающей в колонну ГБХ, учитывая, что ОК – 80%, а смесь азотной кислоты и воды – 20%.
Выбираем средний состав кислот:
HNO3 27%
H2SO4 45%
H2O 28%
Принимаем, что в отработанной кислоте 3% АК в виде окислов азота связаны в нитрозилсерную кислоту по реакции (1):
2H2SO4 + N2O3
2HNSO5 + H2O (1)Пересчитав состав кислот, получим:
HNO3 - 25%
H2SO4 - 45%
H2O - 26,1%
N2O3 - 0,9%
HNSO5 - 3%
Всего - 100%
В процессе разгонки кислотных смесей и гидролиза HNSO5 в колонне протекают следующие реакции:
- разложение HNSO5
2HNSO5 + H2O = 2H2SO4 + NO2 (2)
- разложение HNO3
2HNO3
2NO2 + H2O + 1/2O2 (3)2HNO3
N2 + H2O + 2*1/2 O2 (4)- разложение N2O3
N2O3(газ)
NO (газ) + NO2 (газ) (5)В колонну ГБХ поступает:
1. Отработанная кислота в количестве 1000 кг,
В том числе:
HNO3 - 250 кг
H2SO4 - 450 кг.
H2O - 261 кг.
N2O3 - 9 кг.
HNSO5 - 30 кг.
2. Купоросное масло 91% - х кг.
3. Перегретый пар – у кг.
4. Воздух, подсасываемый из помещения
Из колонны выходит:
1. Разбавленная 70% H2SO4=
кг2. Крепкая 98% HNO3 =
=242,3 кг3. Нитрозные газы
а) в колонне 1/2 количества (1,5%) HNO3 разлагается до NO2 по реакции (3)
242,3х0,015 = 3,64 кг.
При этом образуются газообразные вещества:
NO2=
=2,65 кгH2O =
=0,52 кгO2 =
=0,46 кг.б) по реакции (4) разлагается ½ количества (1,5%) HNO3 до N2:
N2=
=0,81 кг.H2O =
=0,52 кг.O2 =
=2,3 кгв) при разложении N2O3 по реакции (5):
NO2=
=5,45 кгNO =
= 3,55 кгг) при разложении HNSO5 по реакции (2):
NO2=
=5,43 кгNO =
= 3,54 кгВыделившаяся в процессе реакции серная кислота вновь войдет в состав отработанной кислотной смеси и доля ее в последней составит 450кг.
д) с нитрозными газами уносится 1% HNO3:
242,3х0,01 = 2,42 кг.
В результате гидролиза получается следующее количество сухих нитрозных газов (без учета подсоса воздуха):
g, кг | u, нм3 | |
NO2 | 13,5 | 6,87 |
NO | 7,09 | 5,29 |
N2 | 0,81 | 0,65 |
O2 | 2,76 | 1,93 |
HNO3 | 2,42 | 0,86 |
Всего | 26,58 | 15,6 |
Подсос воздуха uпод через неплотности соединений царг колонны принимаем равным 100% объема сухих газов
uпод= 15.6 нм3, в том числе:
N2=0,78*15,6=12,17 нм3;
O2=0,21*15,6=3,28 нм3;
или
N2=
=15,21 кг;O2=
=4,68 кг;Итого: uпод=19,89 кг.
Принимаем, что подсасываемый воздух поступает при t=20 ОС, относительная влажность 80%
Количество водяных паров, поступающих в колонну с воздухом (14,61*0,8)10-3*19,89=0,23 кг, где
d0 = 14.61
- влагосодержаниеВсего воздуха: 19,89+0,23=20,12 кг.
Количество и состав сухих газов, выходящих из колонны с учетом подсоса воздуха: