Смекни!
smekni.com

Этилен и его производные в промышленном органическом синтезе (стр. 3 из 4)

О

и действием щелочей на хлоргидрин этилена


2НОСН2СН2Сl + Са(ОН)2 2СН2¾СН2+СаСl2+2Н2О

\ /

О

Главные задачи при технологическом осуществлении первого метода заключаются в выборе условий, исключающих возможность взрыва смеси этилена с кислородом и обеспечивающих образование окиси этилена в качестве главного продукта реакции.

По второму методу этилен сначала обрабатывают хлорноватистой кислотой НСlО для получения хлоргидрина, который кипячением с известковым молоком или щелочами превращается в окись этилена.

Этот процесс осуществляется в колонне с насадкой из керамических колец при температуре 70°С. Выход окиси этилена по этому методу достигает 75% от теоретического.

В присутствии слабых оснований в этой реакции образуется главным образом этиленгликоль:


СН2ОН-СН2Сl + NаНСО3 СН2ОН-СН2ОН +NaCl+СО2

Этиленгликоль представляет собой бесцветную жидкость, очень похожую на глицерин; он обладает сладким вкусом и почти не имеет запаха. Замерзает нечётко при температурах от -13 до -25°С, плавится около 12-17°С ниже нуля. Водные растворы этиленгликоля замерзают при сравнительно низких температурах. На этом свойстве основано применение этиленгликоля в качестве антифриза для охлаждения двигателей внутреннего сгорания.

Для получения этиленгликоля существуют три промышленных способа:

1. гидролиз этиленхлоргидрина;

2. гидролиз дихлорэтана;

3. гидратация окиси этилена.

Гидролиз дихлорэтана производится при помощи

двууглекислых солей:


СН2Сl-СН2Сl +2NаНСО3 СН2ОН-СН2ОН +2NaCl +2СО2 +71кДж

Серьёзным недостатком способа получения этиленгликоля из дихлорэтана является трудность отделения растворов от солей в процессе упарки и отгонки этиленгликоля под вакуумом.

Наиболее удобным способом получения этиленгликоля является гидратация окиси этилена. Она производится обычно в присутствии небольших количеств (0,05%) серной кислоты в качестве катализатора. Смесь нагревается в автоклаве при температуре 100°С в течение двух часов. Получается весьма чистый этиленгликоль в виде 25%-ного раствора.

Этиленгликоль находит разнообразное применение. Он используется в приготовлении антифризов, применяемых для охлаждения моторов автомобилей и самолётов, вместо рассола в холодильных машинах и т.д. антифризы применяются для предохранения предметов от обледенения (пропеллеров самолёта). Гликоль является распространённым пластификатором для различных клеев. Наравне с глицерином он применяется в качестве смягчающего средства в полиграфическом производстве.

Из этиленгликоля приготовляют многие вещества, имеющие большое практическое значение, например динитроэтиленгликоль, эфиры с органическими кислотами, полигликоли и т.д.

Окись этилена энергично реагирует с аммиаком, давая различные этаноламины, нашедшие практическое применение.

1. Моноэтаноламин Н2N-CH2-CH2OH - густая, сиропообразная, очень гигроскопическая жидкость, обладающая сильно выраженными основными свойствами.

2. Диэтаноламин NH-(CH2-CH2OH)2 - легко расплывающиеся и дымящие на влажном воздухе кристаллы с температурой плавления 28°С.

3. Триэтаноламин N-(CH2-CH2OH)3 - тяжёлая, вязкая жидкость, быстро темнеющая на воздухе. Хорошо поглощает влагу и углекислый газ.

Триэтаноламин и отчасти диэтаноламин применяют для

извлечения углекислоты и сероводорода из промышленных газов, например при отчистке нефтяных или природных газов. Они также широко используются как основания при изготовлении мыла.

Синтез на основе гомологов этилена

Ближайшие гомологи этилена - пропилен и бутилены - более активны в химическом отношении, чем сам этилен. Их реакции разнообразны и протекают с большей лёгкостью, и такие углеводороды начинают всё в большей степени использоваться в промышленном органическом синтезе.

Алкирирование пропиленом бензола даст изопропилбензол (кумол), окислением которого получают фенол и ацетон. При гидратации пропилена образуется изопропиловый спирт. Процесс осуществляется в колоннах непрерывного действия при температуре 40-50°С с использованием 80-85% серной кислоты или же в присутствии жидких или твёрдых катализаторов (например, восстановленная окись вольфрама на силикагеле) - прямая


СН3-СН = СН2 + НОН СН3-СНОН-СН3

Изопропиловый спирт применяется для получения ацетона, уксусного ангидрида, диизопропилового эфира, перекиси водорода, в парфюмерной промышленности, а так же в качестве растворителя.

Хлорирование пропилена с последующей обработкой хлоропроизводных является сейчас одним из промышленных способов получения глицерина. При высокой температуре (360-400°С) в присутствии определённых катализаторов (активированный уголь) происходит замещение атомов водорода в метильной группе пропилена на хлор и получается хлористый аллил:


СН3-СН = СН2 + Сl2 СН2Сl -СН = СН2 + НCl

Хлористый аллил нагреванием с раствором соды при 150°С и давлением 250 атм омыляется в аллиловый спирт:


2СН2Сl-СН=СН2+Nа2СО3 2О 2СН2ОН-СН=СН2+2NаСl+СО2

Хлорированием аллилового спирта при низкой температуре и омылением полученного 1,2 - дихлорпропанол-3 получают глицерин


СН2ОН-СН = СН2 + Сl2 СН2ОН-СНСl-СН2Сl

СН2ОН-СНСl-СН2Сl + НОН СН2ОН-СНОН-СН2ОН

В промышленности так же осуществлено производство глицерина из акролеина присоединением к нему перекиси водорода, с последующим восстановлением глицеринового альдегида.

Главным направлением в использовании н-бутилена является его дегидрирование для получения бутадиена - 1,3 (дивинил), алкилирование, гидратация в бутиловые спирты и изомеризация в изобутилен.

Производство бутадиена из н-бутана и н-бутиленов может быть осуществлено в две стадии или в одну стадию. Дегидрирование н-бутана - процесс эндотермический:


СН3-СН2-СН2-СН3 СН3-СН = СН-СН3 + Н2 - 126 кДж

По двустадийному способу производства исходное сырьё - бутановую фракцию предварительно подвергают ректификации и направляют на первую стадию процесса - дегидрирование н-бутана в бутилены, что осуществляется при t°=530-600°C на алюмохромовом катализаторе, активированным едким кали и окислами металлов. Для этой цели применяются трубчатые реакторы с неподвижным и движущимся слоем катализатора, а так же аппараты с кипящим слоем пылевидного катализатора. После охлаждения, сжатия и очистки из полученных продуктов выделяют фракцию, содержащую бутилены, которые направляют на вторую стадию - в адиабатический реактор, внутри которого имеется решётка со слоем катализатора. При этом идут следующие реакции


СН3-СН2-СН = СН2

СН2 = СН-СН = СН2 + Н2 - 113 кДж

СН3-СН = СН-СН3

Для выделения чистого дивинила применяют физические и химические методы, из которых можно отметить экстракционную перегонку и поглощение водным аммиачным раствором ацетата меди (хемосорбция). Не прореагировавшие бутилены возвращаются на дегидрирование.

Для получения бутиловых спиртов на бутан-бутиленовую фракцию, выделяемую из газов крекинг - процесса, действуют серной кислотой. Применяя последовательно растворы соляной кислоты различной концентрации (55-80%), извлекают из смеси, содержащей бутаны, и все три изомерные бутилена: сначала изобутилен, как более активный изомер, а затем другие бутилены в виде соответствующих вторичных и третичного спиртов. Очистка спиртов производится ректификацией.

Изомеризация в изобутилен осуществляется пропусканием н-бутилена через контактные аппараты при t°=300°С в присутствии в качестве катализатора фосфорной кислоты, нанесённой на шамот. Изобутилен обладает большой активностью и успешно применяется в промышленности для синтеза изооктана, полиизобутиленов, для получения бутилкаучика, некоторых душистых веществ (искусственный мускус) и в ряде других производств.