Смекни!
smekni.com

Этилен и его производные в промышленном органическом синтезе (стр. 1 из 4)

МИНИСТЕРСТВО ОБЩЕГО

И ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

РОССИЙСКОЙ ФЕДЕРАЦИИ

СамГТУ

Кафедра органической химии

КУРСОВАЯ РАБОТА

ЭТИЛЕН И ЕГО ПРОИЗВОДНЫЕ В ПРОМЫШЛЕННОМ ОРГАНИЧЕСКОМ СИНТЕЗЕ

Выполнил Асафьев В.Н.

студент II-ХТ-4

Принял Климочкин Ю.Н.

доктор химических наук

Самара

1999

Содержание

Стр.

Получение и применение

этилена……………………………………………………………….. 3

Галогенирование этилена……………………………………………

Гидратация этилена………………………………………………….

Окись этилена и синтезы на её основе…………………………………………………………………

Синтезы на основе гомологов этилена………………………………………………………………..

Полимеризация олефинов……………………………………………

Список используемой литературы…………..……………………………………………….

Получение и применение этилена.

Этилен впервые был получен немецким химиком Иоганном Бехером в 1680 году при действии купоросного масла на винный спирт. Вначале его отождествляли с "горючим воздухом", т.е. с водородом. Позднее, в 1795 году этилен подобным же образом получили голландские химики Дейман, Потс-ван-Труствик, Бонд и Лауеренбург и описали под названием "маслородного газа", так как обнаружили способность этилена присоединять хлор с образованием маслянистой жидкости - хлористого этилена ("масло голландских химиков").

Изучение свойств этилена, его производных и гомологов началось с середины ХIХ века. Начало практическому использованию этих соединений положили классические исследования А.М. Бутлерова и его учеников в области непредельных соединений и особенно созданная Бутлеровым теория химического строения. В 1860 году он получил этилен действием меди на йодистый метилен, установив структурную формулу этилена.

Этилен представляет собой бесцветный газ, обладающий слабым, едва ощутимым запахом. Он плохо растворим в воде (при 0°С в 100 г воды растворяется 25,6 мл этилена), горит светящимся пламенем, образует с воздухом взрывчатые смеси. Термически менее устойчив, чем метан. Уже при температурах выше 350°С этилен частично разлагается на метан и ацетилен:


2Н4 2СН4 + 2С2Н2

При температуре около 1200°С диссоциирует главным образом на ацетилен и водород:


С2Н4 С2Н2 + Н2

В природных газах (за исключением вулканических) этилен не встречается. Он образуется при пирогенетическом разложении многих природных соединений, содержащих органические вещества.

Процесс пиролиза для получения этилена осуществляется в печах различного устройства пропусканием газообразных углеводородов или их паров в присутствии катализаторов при температуре 760-780°С. Обычно используются печи трубчатого типа. Этилен можно также получить дегидрированием этана:


2СН4 t° С2Н4 + 2Н2

и осторожным гидрированием ацетилена:


С2Н2 + Н2 кат С2Н4

Для получения этилена и его гомологов методом пиролиза в качестве сырья используют этан, пропан, бутан, содержащиеся в попутных газах нефтедобычи, газах термического и каталитического крекингов, а также жидкие углеводороды: газовый бензин и низкоактановые бензино-легроиновые фракции прямой гонки нефти.

Производительность существующих печей для пиролиза углеводородов составляет 3,5-4 т перерабатываемого сырья в час. Печи новой конструкции рассчитаны на переработку 7-10т сырья в час.

При определённых условиях пиролиза бензина при получении 1т этилена может быть одновременно выделено: пропилена - 0,65т; изобутилена - 0,11т; н-бутиленов - 0,11т, дивинила - 0,12т; бензола - 0,165т и толуола - 0,08т, использование которых позволит значительно улучшить технико-экономические показатели нефтехимических производств. Из этилена получают более 200 ценных соединений, важнейшими из которых являются хлористый этил, дихлорэтан-1,2, этиленхлоргидрин, окись этилена, диоксан, этиленгликоль, этиловый эфир этиленгликоля, уксусногликолевый эфир, диэтиленгликоль, этиламин, этаноламин, диэтаноламин, триэтаноламин.

Галогенирование этилена.

Обычной реакцией между галогенами и непредельными углеводородами является присоединение атомов галогена по месту двойной связи с образованием галогенопроизводных с чётным числом атомов галогена. Однако у олефинов с разветвлёнными цепями, а при высокой температуре и у олефинов нормального строения галогенирование протекает сложнее, с образованием полихлоридов и непредельных моногалогенопроизводных.

Активность галогенов в реакциях присоединения понижается с увеличением их молекулярного веса. Фтор реагирует весьма энергично, реакция присоединения хлора протекает несравненно медленнее.

При хлорировании этилена сначала получается дихлорэтан:


С2Н4 + Сl2 С2Н4Сl2 + 201 кДж

Но хлорирование этилена может идти и дальше, в результате чего образуется трихлорэтан и тетрахлорэтан. Выход этих продуктов растёт с повышением температуры реакции. Для торможения цепной реакции замещения при хлорировании этилена и получения более чистого дихлорэтана процесс ведут при низких температурах и в присутствии небольших количеств хлорного железа и О2.

Следует отметить, что Е.В. Алексеевский в 1928 году установил, что при пропускании смеси этилена и хлора над углём при 120°С получается чистый дихлорэтан с выходом в 80% от теоретического.

Процесс получения дихлорэтана хлорированием этилена в промышленности осуществляется в реакторе с мешалкой или башне барботажного типа. Заранее тщательно высушенные, во избежании коррозии аппаратуры, хлор и этилен с небольшим избытком последнего (5-10%) поступают раздельно в нижнюю часть реактора1 и барботируют через слой дихлорэтана.

Рисунок 1



Избыточный дихлорэтан стекает в сборник 2. Газы, содержащие пары дихлорэтана, хлористый водород, не прореагировавший этилен, поступают в вымораживатель для извлечения дихлорэтана, а оставшиеся газы промываются водой для удаления хлороводорода, после чего выводятся из системы. Из сборника 2 дихлорэтан-сырец насосом 3 направляется в смеситель 4, где растворённый хлористый водород нейтрализуется 5-10%-ным раствором едкого натра. Затем азеотропная смесь дихлорэтан-вода отгоняется при температуре 72°С в колонне азеотропной сушки, не показанной на схеме, и для освобождения от трихлорэтана и других примесей поступает в ректификационную колонну 10.

Процесс осуществляется в среде жидкого дихлорэтана, который растворяет хлор и этилен и обеспечивает необходимый отвод тепла из зоны реакции. Циркуляция дихлорэтана через выносной теплообменник позволяет вести реакцию с хорошим выходом при температуре 30-40°С.

Дихлорэтан получил широкое практическое применение как неогнеопасный растворитель при извлечении жиров, а также для синтеза таких ценных химических продуктов, как этиленгликоль и его эфиры, этилендиамин, дибензил, хлористый винил, полисульфидный синтетический каучук (тиокол) и др. Дихлорэтан используется для борьбы с вредителями с/х (окуривание или фумигация).

Дихлорэтан легко отщепляет хлористый водород, превращаясь в хлористый винил:

активир. уголь


СН2Сl-СН2Сl 480-520°С СН2 = СНСl + НСl

Производство этого важного для промышленности мономера осуществляется и другими методами. При хлорировании этилена при температуре 430°С образуется хлористый винил:


СН2 = СН2 + Сl2 СН2 = СНСl + НСl

Хороший выход наблюдается и при дегидрохлорировании дихлорэтана спиртовым раствором щёлочи:


СН2Сl-СН2Сl + NaOH 75°С, 2,5 атм СН2 = СНСl + NaСl + Н2О

Для получения этиленгликоля дихлорэтан нагревают в автоклавах с известью или раствором щелочи. При взаимодействии с известью достаточно 15-20 минутного нагревания при 190°С и 100 атм давления, чтобы получить с выходом 80-85% (А.Л. Клебанский и И.М. Долгопольский, 1933г.).

Хорошие результаты получают при омылении в автоклаве формиатом натрия в присутствии метанола:


СН2Сl-СН2Сl +2НСООNa + 2СН3ОН

СН2ОН-СН2ОН +2NaCl +2НСООСН3

Образующийся муравьино-метиловый эфир действием щелочи переводится в формиат натрия и метиловый спирт, которые снова реагируют с дихлорэтаном. Процесс проводится непрерывно.