Смекни!
smekni.com

Модифицированные эпоксидные композиции пониженной горючести (стр. 2 из 3)

Влияние исследуемых ЗГ на поведение эпоксидной смолы при пиролизе проявляется в следующем:

· повышается термоустойчивость материала, что подтверждается возрастанием температуры начала деструкции;

· увеличивается выход карбонизованного остатка по окончании основной стадии деструкции, соответственно, снижается количество летучих продуктов, табл.;

· значительно увеличивается энергия активации процесса деструкции;

· снижаются скорости потерь массы.

Таблица 3

Данные ТГА и горючести эпоксидных компаундов

Состав композиции, масс.ч., на 100 масс.ч. ЭД-20 Тнач.,оС КО, % Dm, % Еа, кДж/моль
ЭД-20+15ПЭПА 200 53(390оС) 78 95
Фосполиол 230 34(350оС) - 148
ЭД-20+40ФП+15ПЭПА 215 58(360оС) 0,9 69
Фостетрол 260 35(350оС) - 81
ЭД-20+40ФТ+15ПЭПА 220 57(355оС) 1,4 158
Фосдиол 260 26(350оС) - 102
ЭД-20+40ФД+15ПЭПА 275 54(345оС) 0,8 823
ФОМ 180 28(380оС) - 297
ЭД-20+20ФОМ+15ПЭПА 230 49(365оС) 4,0 85

Выявленное влияние ФП, ФТ и ФД на термолиз эпоксидной смолы проявляется и в поведении материала при горении.

Образцы испытаны при горении на воздухе с применением методов «огневой трубы» и «керамической трубы». Результаты испытаний, полученных обоими методами, коррелируют, табл.3, 4. Образцы, содержащие ЗГ, не поддерживают горение на воздухе, а большие потери массы (0,6-4%) связаны с некоторой деструкцией полимера. Следовательно, все разработанные составы относятся к классу трудногорючих, так как в соответствии с ГОСТ 12.1.044-89 к этому классу относятся материалы, для которых Dt<60оC и Dm<60%.

Таблица 4

Показатели горючести эпоксидных композиций

Состав материала, масс. ч., на 100 масс. ч. ЭД-20 Приращение температуры, DТ, оС Потери массы, Dm, %
ЭД-20+15ПЭПА +650 80
ЭД-20+40ФД+15ПЭПА -20 0,15
ЭД-20+40ФОМ+15ПЭПА -10 0,21
ЭД-20+20ФД+20ФОМ+15ПЭПА -30 0,31
ЭД-20+40ФД+20ФОМ+15ПЭПА -40 0,35

Так как модификаторы влияют на процессы структурообразования эпоксидных композиций, следовательно, возможно изменение их физико-механических свойств.

Введение 40 масс.ч. ФД приводит к увеличению разрушающего напряжения при изгибе в 3 раза, и к удару – в 2 раза, табл.5.

Композиции, содержащие как ФОМ, так и одновременно ФОМ и ФД, обладают более высокой устойчивостью к ударным нагрузкам. При испытаниях на изгиб образцы не разрушаются при прогибе на 1,5 толщины, и напряжение при изгибе составляет 92 и 62 МПа соответственно, табл.5.

Таблица 5

Физико-механические свойства эпоксидных композиций

Состав материала, масс. ч., на 100 масс. ч. ЭД-20 sи, МПа ауд, кДж/м2 ТВ, оС
ЭД-20+15 ПЭПА 17 5 115
ЭД-20+40 ФП+15 ПЭПА 58 3 >200
ЭД-20+40 ФТ+15 ПЭПА 16 2 >200
ЭД-20+40 ФД+15 ПЭПА 69,6 12,6 >200
ЭД-20+20 ФОМ+15 ПЭПА 91,8* 15,2 >200
ЭД-20+40 ФД+20 ФОМ+15 ПЭПА 71,1 14,3 >200
ЭД-20+20 ФД+20 ФОМ+15 ПЭПА 62,4* 12,95 >200

Примечание: * - прогиб на 1,5 толщины.

Анализ физико-химических, физико-механических свойств, а также поведение материалов при пиролизе и горении показал, сто разработанные составы могут применяться в качестве пропиточных и заливочных компаундов пониженной горючести.

Глава 4. Наполненные эпоксидные композиции с пониженной горючестью

В качестве дисперсных наполнителей в работе использовались: кубовый остаток, гальванический шлам и тальк. Использование отходов целесообразно экономически и решает экологические проблемы.

Для оценки возможности использования данных отходов в качестве наполнителя для полимерных композиционных материалов определен ряд их свойств: гранулометрический состав, насыпная и истинная плотности, поведение при воздействии повышенных температур.

Кубовый остаток и шлам полидисперсны. В качестве наполнителя для эпоксидных смол рекомендуется использовать фракцию с размером частиц £140 мкм, так как она характеризуются большей удельной поверхностью, табл.6, обеспечивающей лучшее взаимодействие наполнителя и связующего.

Таблица 6

Свойства наполнителей

Наполнитель Плотность, r, кг/м3 Насыпная плотность,rнас., кг/м3 Удельная поверх-ность,S, м2/кг Потери при сушке или термообработке, %
Шлам высушенный 5100 1111 679,4 85,2
Фракции с dч£140 мкм 5100 1000 712,3 -
Шлам с dч£140 мкм термообработанный при 200оС 120 мин 5100 870 882,6 25
КО с dч£140 мкм 1050 526 1150,2 3,6
Тальк 1800 800 - 0,8

Методом ИКС проведен анализ исследуемых соединений, рис.4.

Кубовый остаток многокомпонентен и состоит из олигомеров капролактама, значительную часть которых составляют линейные и циклически димеры и тримеры. В ИК-спектрах кубового остатка отмечены пики валентных колебаний групп СН2, NH, NH-С=О, что полностью подтверждает его химический состав.

Данные ИКС талька также полностью подтверждают его состав.

В составе высушенного шлама имеются гидроксильные группы (3408, 73 см-1), что свидетельствует о присутствии в составе шлама гидроксидов металлов, а также группы NO3-2 (1401 см-1), CO3-2 (1488,49 см-1), Al-O-Al (Si-O-Si) (1042,53 см-1), Cu-O-Cu (1088 см-1), значительное количество небольших пиков при длинах волн 500-700 см-1 - неидентифицированно, рис.4.

Методом оптической микроскопии определено наличие в составе высушенного шлама частиц различного цвета: белого, желтого и красного. В связи с этим проведен спектральный анализ данных частичек. Установлено, идентичность пиков всех частиц при длинах волн 1500-3400 см-1 и существенные различия при длинах волн 400 - 1500 см-1. Так, в спектрах частиц белого цвета длины волн 1042,48 см-1 могут соответствовать колебаниям Al-O-Al, Si-O-Si групп, а в спектрах частиц красного цвета пик при 1088 см-1, может быть вызван колебаниями Cu-O-Cu, а желтого - Cr.

Эмиссионным спектральным анализом установлено наличие в составе шлама кроме указанных элементов также Fe, Zn, Cr, Ni, Al, Cu, Mg, Na,Ca, Si.

Элементным анализом определено количество основных элементов в шламе составе шлама, табл.7.


Таблица 7

Химический состав исходного шлама

Химический состав шлама Cr(OH)3 Ni(OH)2 Zn(OH)2 Fe(OH)3 Влажность Примеси
Содержание элементов, % масс 6,7 6,0 13,4 61,8 85,2 сульфаты, хлориды, аммоний

Поведение применяемых наполнителей при воздействии повышенных температур исследовалось методом ТГА, табл.8.

Таблица 8

Данные ТГА наполнителей

Вещество Основные стадии термолиза Потери массы массы, % при температурах ,оС
Тнк , оС Тн
mн - mк , %
mн
100 200 300 400 500 600
Шлам исходный (сухой) 80-280140 9-2218 3 13 19 24 26 27
Шлам, обрабтанный при 200оС 80-280120 7-1916 3 11,5 16 20 21 21
Шлам, обработанный при 250оС 80-280220 3-85 0 2,5 5 8,5 10 10,5
Кубовый остаток
4 16 42 64 - -

Для повышения термостойкости шламов проводили их термообработку при температурах 200оС в течение 120 минут и 250оС в течение 60 минут. Для высушенного шлама и шламов, обработанных при температуре 200 и 250оС характерны одинаковые температуры начала деструкции, и только температура термообработки 250оС обеспечивает значительное уменьшение ~ в 4 раза потерь массы, табл.7.

Кубовый остаток является термостойким наполнителем (Тн=260оС), видимо за счет наличия в его составе циклических структур, табл.7.

Введение кубового остатка и талька способствует повышению вязкости исходного эпоксидного олигомера. Влияние гальваношлама на вязкость композиций проявляется в меньшей степени, табл.9.

Применение модификаторов, хорошо совместимых с олигомером оказывает пластифицирующее действие на наполненные эпоксидные композиции, так как видимо наряду с пластификацией, уменьшается адгезионное взаимодействие на границе раздела фаз. Снижение вязкости улучшает условия контакта связующего с наполнителем и технологичность переработки состава.