Существенное значение для межфазного взаимодействия, для формирования граничных слоев и комплекса механических свойств имеют размер частиц наполнителя и распределение по размерам. В связи с этим исследован гранулометрический состав наполнителей (ТРГ, ПФА, NH4Cl) (рис. 1). Показано, что все наполнители полидисперсны. Преобладающей фракцией ТРГ, ПФА, NH4Cl являются частицы с диаметром, равным 0,63 мм. Поэтому для улучшения электропроводности и повышения удельной поверхности, обеспечивающей увеличение протяженности границы раздела фаз и доли граничного слоя, проводили измельчение наполнителей на шаровой мельнице. В работе для наполнения использовали частицы с d=0,14 мм.
Рис. 1. Гранулометрический состав наполнителей: 1- терморасширенный графит (ТРГ), 2 – полифосфат аммония, 3 – аммоний хлористый
В связи с тем, что модификаторы изменяют процессы структурообразования, а следовательно структуру и свойства композитов, исследовано их влияние на кинетику отверждения. Все исследованные пластификаторы и наполнители, введенные в композицию отдельно, инициируют процессы отверждения, уменьшая время гелеобразования и общее время отверждения (табл. 2).
Таблица 2
Параметры отверждения пластифицированных и наполненных эпоксидных композиций
Состав материала, масс. ч., на 100 масс. ч. ЭД-20 | Время гелеобразования,tгел, мин | Время отверждения, tотв, мин | Максимальная температура отверждения, оС |
ЭД-20+15ПЭПА | 60 | 75 | 121 |
ЭД-20+40ФД+15ПЭПА | 30 | 50 | 64 |
ЭД-20+20ФОМ+15ПЭПА | 20 | 29 | 142 |
ЭД-20+20ФД+20ФОМ+15ПЭПА | 20 | 30 | 118 |
ЭД-20+30ТХЭФ+15ПЭПА | 50 | 70 | 110 |
ЭД-20+30ПФА+15ПЭПА | 30 | 45 | 120 |
ЭД-20+30 NH4Cl +15ПЭПА | 45 | 87 | 72 |
ЭД-20+5ТРГ+15ПЭПА | 30 | 44 | 126 |
ЭД-20+5сажа+15ПЭПА | 25 | 32 | 146 |
При этом только в присутствии ФОМ достигается высокая степень отверждения без термообработки (табл. 3).
Таблица 3
Влияние состава композиции и параметров отверждения на степень превращения эпоксидного олигомера
Состав материала, масс. ч.,на 100 масс. ч. ЭД-20 | Степень отверждения, Х, % | ||
Т=250С,t=24 ч | Т=900С,t=1 ч | Т=900С,t=3 ч | |
ЭД-20 | 90 | 94 | 99 |
ЭД-20+40ФД | 86 | 88 | 92 |
ЭД-20+20ФОМ | 99 | 99 | - |
ЭД-20+20ФД+20ФОМ | 87 | 96 | - |
ЭД-20+30ТХЭФ+15ПЭПА | 89 | 95 | 97 |
Эффективно для снижения горючести содержание в эпоксидной композиции фосфора - 5-6% масс. или хлора - 17%, что возможно при содержании в композиции 30 масс.ч. ПФА и 30 масс.ч. NH4Cl и 25-30% пластификаторов. Увеличение содержания компонентов нецелесообразно из-за высокой вязкости системы и потери ею текучести, даже при наличии пластификаторов.
Совместное введение в состав ЭД-20 наполнителей и пластификаторов ускоряет процесс отверждения, что проявляется в некотором уменьшении времени гелеобразования (τгел), общего времени отверждения (τотв) и максимальной температуры реакции отверждения (Тмах) практически для всех композиций (табл. 4).
Таблица 4
Параметры отверждения наполненных пластифицированных и непластифицированных композиций
Состав материала в масс. ч.на 100 масс. ч. ЭД-20 | Параметры отверждения | Х, %(90°C,2 часа) | ||
τгел, мин | τотв, мин | Тмах, °C | ||
ЭД-20+15ПЭПА | 60 | 75 | 121 | |
ЭД-20+30ПФА+5сажа+30ФОМ+ПЭПА | 30/10 | 55/25 | 73/122 | 86/96 |
ЭД-20+30ПФА+5ТРГ+30ФОМ+ПЭПА | 30/25 | 59/43 | 62/90 | 83/95 |
ЭД-20+30NH4Cl +5ТРг+30ФОМ+ПЭПА | 30/25 | 69/57 | 52/79 | 76/94 |
ЭД-20+30 NH4Cl +5ТРГ+30ФД+ПЭПА | 30/10 | 65/27 | 62/106 | 74/94 |
ЭД-20+30ПФА+5ГТ+25ФОМ+25ПЭПА | 20 | 30 | 124 | 94 |
Примечание: в числителе данные для составов с 15% масс. ПЭПА, в знаменателе – с 25% масс. ПЭПА.
Это, видимо, связано с адсорбционным взаимодействием компонентов реакционной смеси с развитой поверхностью наполнителя. При введении наполнителя жидкоолигомерная система сначала переходит в неравновесное состояние, что объясняется частичным разрушением упорядоченных образований, существующих в исходных олигомерах, под действием энергетического взаимодействия их с твердой поверхностью. Увеличение содержания отвердителя до 25% ПЭПА, то есть сверх стехиометрического соотношения к эпоксидным группам связано с тем, что, как далее показано, некоторые из компонентов реагируют и с отвердителем, и между собой. При этом с увеличением содержания ПЭПА увеличиваются вследствие повышения экзотермичности процесса скорости процесса отверждения, что приводит к уменьшению жизнеспособности композиций (табл. 4). При большем содержании ПЭПА увеличивается степень сшитости матрицы.
Следовательно, изменением соотношения компонентов можно регулировать время гелеобразования составов в зависимости от запросов производства.
Степень превращения наполненных эпоксидных композиций после суток «холодного» отверждения составляет 74-86%. Поэтому для ее повышения и улучшения и стабилизации свойств продуктов отверждения проводили термообработку при 90оС в течение 1-3 часов, что приводит к возрастанию степени отверждения до 94-96 % (табл. 4).
Методом ИКС, ТГА и сканирующей калориметрии доказано наличие химического взаимодействия между эпоксидным олигомером, ФОМ, ФД и ТХЭФ. В ИК-спектрах композиций, содержащих пластификаторы ФД, ФОМ и ТХЭФ, отмечено появление новых пиков (рис. 2).
Рис.2. ИК-спектры: 1-ПЭПА; 2-ЭД-20; 3-ЭД-20+15ПЭПА; 4 – ЭД-20+30 ТХЭФ +15 ПЭПА; 5-ЭД-20+40ФД +15ПЭПА, 6-ЭД-20+20ФОМ+15ПЭПА
В спектрах эпоксидной композиции, содержащей ФД, определено наличие полосы поглощения при 1183 см –1, соответствующей валентным колебаниям –СО– простой эфирной связи группы –СН2-О-СН2, отсутствующей у ФД и ЭД-20,что свидетельствует о химическом взаимодействии компонентов (рис. 2).
В ИК-спектрах композиции ЭД-20, содержащей ФОМ, обнаружено отсутствие пика валентных колебаний связи –С=С– , принадлежащей ФОМ, и появление новых пиков (1150-1070 см–1) группы -С-О-С- алифатического эфира. Эти данные подтверждают взаимодействие ФОМ с олигомером по гидроксильным группам с раскрытием двойной связи.
Появление пика 1030 см-1 Р-О-С связи в спектрах состава, содержащего ЭД-20 и ТХЭФ, также свидетельствует об их химическом взаимодействии.
Эти выводы подтверждаются высокими значениями интегрального теплового эффекта образования эпоксидных композитов (табл. 5).
Таблица 5
Интегральный тепловой эффект образования эпоксидных композитов
Состав композиции, масс.ч., на 100 масс.ч. ЭД-20 | Площадь теплового эффекта, S, град×с/г | Интегральный тепловой эффект, Qр, Дж/г |
ЭД-20+15ПЭПА | 33456,0 | 906,7 |
ФД+ПЭПА | 23609,0 | 639,8 |
ФОМ+ПЭПА | 6952,6 | 188,4 |
ЭД-20+40ФД+15ПЭПА | 5826,9 | 157,9 |
ЭД-20+20ФОМ+15ПЭПА | 17261 | 368,5 |
ЭД-20+20ФД+20ФОМ+15ПЭПА | 22711,0 | 615,5 |
Понимание общих закономерностей физико-химических процессов превращения полимеров в конечные продукты сгорания позволяет целенаправленно решать проблемы снижения их горючести. Поэтому оценивалось поведение материалов при воздействии на них повышенных температур в кислородсодержащей среде (в среде воздуха) методом ТГА.
Применяемые ЗГ относятся к достаточно термостойким соединениям.
По данным ТГА, введение исследуемых пластификаторов в эпоксидную смолу оказывает влияние на поведение при пиролизе и проявляется в том, что: повышается термоустойчивость материала, что подтверждается возрастанием температуры начала деструкции; увеличивается, а с ФД и ФОМ, значительно, энергия активации процесса деструкции; снижаются скорости потери массы (табл. 6). Высокие значения энергии активации также свидетельствуют о химическом взаимодействии компонентов.
Выявленное влияние ЗГ на термолиз эпоксидной смолы проявляется и в поведении материала при горении его на воздухе.
Образцы, содержащие ФД, ФОМ и ТХЭФ, не поддерживают горение при поджигании на воздухе (метод «огневой трубы») и потери массы составляют 0,8, 0,4 и 0,3% соответственно.
Таблица 6
Показатели пиролиза и горючести эпоксидных композиций, отвержденных ПЭПА (15 масс. ч.)
Состав,масс. ч. на 100 масс.ч. ЭД-20 | Температура начала деструкции, ТН, °С | Выход карбонизованного остатка по завершении основной стадии пиролиза, % (масс.) | Энергияактивации основной стадии деструкции, ЕА,кДж/моль | Потери массы при горении на воздухе, (метод «огневой трубы»), Dm, % (масс.) |
ЭД-20 | 200 | 53 (390оС) | 95 | 78 |
ЭД-20+40ФД | 275 | 53 (345оС) | 823 | 0,8 |
ЭД-20+20ФОМ | 230 | 49 (365оС) | 285 | 0,4 |
ЭД-20+30 ТХЭФ | 210 | 54 (300 оС) | 128 | 0,3 |
Определение класса горючести модифицированных композиций методом «керамической трубы» показало, что выделяющиеся продукты деструкции относятся к негорючим, так как температура при испытаниях не только не возрастает, но для всех образцов отмечено ее снижение относительно поддерживаемой в испытательной камере температуры (200ºС), и минимальные потери массы связаны с некоторой деструкцией образца. Следовательно, в соответствии с ГОСТ 12.1.044-89 разработанные составы относятся к классу трудносгораемых, так как к этому классу относятся материалы, для которых Dt<60оC и Dm<60% (табл.7).