Таблица 7
Показатели горючести эпоксидных композиций, определенные по методу «керамическая труба»
Состав материала, масс. ч.,на 100 масс. ч. ЭД-20 | Приращение температуры, DТ, оС | Потери массы, Dm, % |
ЭД-20+15ПЭПА | +650 | 80 |
ЭД-20+40ФД+15ПЭПА | -20 | 0,15 |
ЭД-20+40ФОМ+15ПЭПА | -10 | 0,21 |
ЭД-20+20ФД+20ФОМ+15ПЭПА | -30 | 0,31 |
ЭД-20+40ФД+20ФОМ+15ПЭПА | -40 | 0,35 |
Данные термогравиметрического анализа (ТГА), показали, что влияние применяемых модификаторов в композиции проявляется в следующем: увеличивается выход коксового остатка (КО), следовательно, уменьшается количество летучих продуктов (табл. 8) и температуры максимальных скоростей разложения смещаются в область более низких температур (рис. 3), что свидетельствует о возможности влияния на физико-химические процессы пиролиза полимера на начальной стадии его деструкции.
Таблица 8
Данные ТГА эпоксидных композиций
Состав, масс. ч., на 100 масс.ч. ЭД-20 | Основные стадии пиролиза | Выход коксового остатка, %, при Т, 0С | ||||
, 0С | , % | 200 | 300 | 400 | 500 | |
ЭД-20+15ПЭПА | 93 | 79 | 51 | 37 | ||
ЭД-20+30NН4Сl+5ТРГ+30ФОМ+15ПЭПА | 95 | 62 | 55 | 41 | ||
ЭД-20+30NН4Сl+5ТРГ+30ТХЭФ+15ПЭПА | 89 | 68 | 58 | 43 | ||
ЭД-20+30ПФА+5ТРГ+30ФОМ+15ПЭПА | 200-400 | 5-34 | 95 | 79 | 66 | 64 |
ЭД-20+30ПФА+5 сажа+30ФОМ+15ПЭПА | 200-400 | 6-30 | 94 | 78,5 | 70 | 66 |
ЭД-20+30ПФА+5ГТ+25ФОМ+25ПЭПА | 94 | 63 | 47 | 39 | ||
ЭД-20+30ПФА+5ГТ+25ФОМ+25ПЭПАКОКС | 94 | 89 | 85 | 78 |
Рис.3. Зависимость скорости потери массы от температуры
1 - ЭД-20+15ПЭПА, 2 - ЭД-20+30NH4Cl+5ТРГ+30ФОМ+15ПЭПА,
3 - ЭД-20+30NH4Cl+5ТРГ+30ФД+15ПЭПА, 4 - ЭД-20+30ПФА+5ТРГ+30ФОМ+15ПЭПА,
5 - ЭД-20+30ПФА +5сажа+30ФОМ+15ПЭПА, 6- ЭД-20+30ПФА+5ГТ+25ФОМ+25ПЭПА
Образцы, содержащие замедлители горения и наполнители, не горят на воздухе. В пламени спиртовки начинают вспениваться, образуют кокс и по данным всех методов снижения горючести материалы относятся к классу трудносгораемых (табл. 9).
Таблица 9
Показатели горючести эпоксидных композиций
Состав материала, масс. ч. на 100 масс. ч. ЭД-20 | Потери массы (Δm) определенные | Кис-лородный индекс, % объем. | ||
при поджигании на воздухе | по методу «керамическая труба» ГОСТ 12.1.044-89 | |||
ΔТ,°С | Δm,% | |||
ЭД-20+15ПЭПА | 78 | +650 | 80 | 19 |
ЭД-20+30NН4Сl+5ТРГ+20ФД+10ПЭПА | 1,05 | -30 | 0 | 38 |
ЭД-20+30NН4С1+5ТРГ+30ТХЭФ+15ПЭПА | 6,6 | -30 | 0,19 | 35,5 |
ЭД-20+30NН4С1+5ТРГ+30ФОМ+15ПЭПА | 2,84 | -20 | 0,22 | 36 |
ЭД-20+30NН4С1+5ТРГ+30ФД +15ПЭПА | 0,9 | -20 | 0,13 | 36 |
ЭД-20+30ПФА+5ТРГ+30ФОМ+15ПЭПА | 6,09 | -20 | 0 | 40 |
ЭД-20+30ПФА+5 сажа+30ФОМ+15ПЭПА | 3,15 | -20 | 0 | 37 |
ЭД-20+30ПФА+35ФОМ+15ПЭПА | 0,519 | -20 | 0 | 33 |
ЭД-20+30ПФА+5ГТ+25ФОМ+25ПЭПА | 1,38 | -20 | 0,32 | 35 |
ЭД-20+30ПФА+5ТРГ+50ФОМ+25ПЭПА | 3 | -20 | 0,1 | 36 |
Примечание: Δm - потери массы образцов, %; ΔТ- приращение температуры
На горение полимерных композиционных материалов большое влияние оказывают процессы коксообразования, структура и свойства кокса. Применение фосфорсодержащих замедлителей горения, являющихся катализаторами коксообразования коксующихся полимеров, повышает выход карбонизованного остатка и изменяет его макро- и микроструктуру. Это приводит к изменению теплообмена между пламенем и полимером, а следовательно, влияет на протекание процессов пиролиза и горения.
Поэтому изучение механизма карбонизации полимеров, а именно влияние на него замедлителей горения, условий испытаний и других факторов важно при разработке ПКМ пониженной горючести.
При сгорании ПКМ, не содержащих в своем составе замедлителей горения, кокс имеет мелкопористую однородную структуру, не разделяющуюся без разрушения.
ПКМ, имеющие в своем составе пластификаторы, например, ФОМ и наполнители ПФА и ТРГ, при сгорании образуют кокс, на поверхности которого формируется “шапка” пенококса, большая по объему, низкой плотности и высокой пористости. Образовавшийся вспененный слой кокса легко разрушается и удаляется, а под ним сохраняется структура образца.
Изучение спектров композиции ЭД-20 + 30ПФА + 5ТРГ + 25ФОМ + 25ПЭПА и ее кокса показало сохранение фосфора в коксе (рис. 4). Следует также отметить, что при 400ºC не произошло полной деструкции образцов, о чем свидетельствует сохранность в коксе валентных и деформационных колебаний всех присущих составу групп.
Рис.4. ИК-спектры:
1-кокс ЭД-20+30ПФА+5ТРГ+25ФОМ+25ПЭПА,
2-ЭД-20+30ПФА+5ТРГ+25ФОМ+25ПЭПА
Образовавшийся кокс термически стабилен, так как при повторном влиянии на него повышенных температур потери массы при 400°C составляют всего 15%.
Сохранение фосфора в коксе подтверждается также данными эмиссионного спектрального анализа образцов состава ЭД - 20 + 30 NH4Cl + 5ТРГ + 30ФОМ + 25ПЭПА (табл. 10).
Таблица 10
Расшифровка качественного и относительного количественного содержания фосфора, полученного методом ЭСА
Элемент | Длинаволны | Состав композиций | |
ЭД-20+30NH4Cl+5ТРГ+30ФОМ+25ПЭПА | Кокс ЭД-20+30NH4Cl+5ТРГ+30ФОМ+25ПЭПА | ||
Р | 2535,6 | +2 | +3 |
Теплоизолирующая способность к0о,кса главным образом определяется кратностью вспенивания, поэтому для исследованных образцов были определены кратность вспенивания и плотность кокса (табл. 11).
Способность материалов к вспениванию зависит от состава композиции. Отверждённая эпоксидная смола при воздействии температур без модифицирующих добавок увеличивается в объеме в 28 раз. Наибольшее влияние на склонность к вспениванию оказывает структура углеродных наполнителей. Так, введение в наполненные эпоксидные композиции технического углерода (сажи) в количестве 5 масс. ч., имеющего высокую плотность, ещё в меньшей степени способствует увеличению объёма образцов. В то же время образцы с аналогичным количеством ГТ и ТРГ формируют в 1,5 раза больший объем. Введение в состав пластифицированных эпоксидных композиций NH4Cl и ТРГ увеличивает кратность вспенивания.
Таблица 11
Определение кратности вспенивания кокса эпоксидных композиций
Состав материала, масс. ч.,на 100 масс. ч. ЭД-20 | Плотность образца, г/см3 | Плотность кокса, кг/м3 | Кратность вспенивания, раз |
ЭД-20+15ПЭПА | 1,1 | 5,4 | 28,35 |
ЭД-20+35ПФА +30ФОМ+15ПЭПА | 1,07 | 15,8 | 11,25 |
ЭД-20+30ПФА +5сажа+30ФОМ+15ПЭПА | 1,13 | 34,5 | 6,75 |
ЭД-20+30ПФА +5ГТ+25ФОМ+25ПЭПА | 1,09 | 9,8 | 35,28 |
ЭД-20+30ПФА +5ТРГ+25ФОМ+25ПЭПА | 0,87 | 5,2 | 46,95 |
ЭД-20+30NH4Cl+5ТРГ+30ТХЭФ+15ПЭПА | 1,18 | 5,7 | 49,6 |
При введении в эпоксидные композиции пластификаторов и наполнителей физико–механические свойства изменяются незначительно и находятся на уровне свойств эпоксидного полимера, а в некоторых случаях превосходят свойства ЭД-20 (табл. 12).
Таблица 12
Физико-механические свойства эпоксидных композиций, отвержденных 25% ПЭПА
№ п/п | Состав материала, масс. ч. на 100 масс. ч. ЭД-20 | sи, МПа | ауд, кДж/м2 | НВ, МПа |
1 | ЭД-20 + 15 ПЭПА | 17 | 3,5 | 110-120 |
2 | ЭД-20+30ПФА+5ГТ+25ФОМ | 33,25 | 4,16 | 202,7 |
3 | ЭД-20+30ПФА+5ТРГ+25ФОМТРГ с dч =0,14мм. | 24,57 | 4,02 | 61,4 |
4 | ЭД-20+30ПФА+5ТРГ+25ФОМТРГ с dч =0,63мм. | 15,2 | 3,02 | 59,6 |
5 | ЭД-20+30ПФА+5ТРГ+30ФОМ | 27,3 | 2,3 | 57,1 |
6 | ЭД-20+30ПФА+5 сажа+30ФОМ | 28,5 | 3,4 | 81,2 |
7 | ЭД-20+30NН4С1+5ТРГ+30ФОМ | 15,05 | 3,0 | 29,3 |
8 | ЭД20+30NН4С1+5ТРГ+30ФД | 20,5 | 4,05 | 58,6 |
Так как эпоксидные смолы обладают хорошей адгезией к материалам, их можно использовать в качестве покрытия по древесине и металлу, что обеспечит огнезащиту. Это достигается предварительным нанесением на поверхность защитного покрытия или образованием защитного поверхностного слоя в ходе термического разложения полимерного материала.Покрытия могут быть трудновоспламеняемыми или негорючими, предотвращающими воспламенение основного полимерного материала, или теплоизолирующими, основное назначение которых - ослаблять воздействие на материал обратного теплового потока от пламени. При термическом разложении полимеров, обладающих повышенной склонностью к коксообразованию, защитный слой ограничивает выход в газовую фазу горючих продуктов термодеструкции полимера и уменьшает тепловое воздействие на полимер.