Дли сжигания серы применяют печи различных конструкции. Наиболее распространена печь для сжигания жидкой серы в распыленном состоянии — форсуночная печь. Устройство се очень простое. Она представляет собой горизонтальный стальной футерованный огнеупорным кирпичом цилиндр 1 (рис. 5.1).
Рис. 5.1. Печь для сжигания жидкой серы и распыленном состоянии (форсуночная печь): 1 - стальной цилиндр, 2- футеровка, 3 - асбест, 4 – перегородки, 5 - форсунка для распыленны топлива, 6-форсунки для распыления серы, 7- короб для подвода воздуха в печь
Серу подают в торцевую часть печи форсунки 6. Сюда же вводится воздух для горения. Дополнительный (вторичный) воздух поступает через отверстие в корпусе печи. Сора сгорает во всем объеме печи, а для лучшего перемешивания газа внутри печи установлены перегородки 4 из огнеупорного кирпича.
Применяются также печи для сжигания расплавленной серы в параллельном потоке воздуха при движении серы сверху вниз по насадке - вертикальные форсуночные печи и печи отражательного типа, где сера в виде паров сгорает в токе воздуха между двумя сводами с раскаленными решетками, под нижним из которых находится расплавленная сера.
Плавление серы производится в отдельных плавилках, снабженных паровыми змеевиками или рубашками, которые обогреваются паром иди подогретым воздухом..
Со склада сера, предварительно раздробленная до кусков размером 40—50 мм, ленточными транспортерами подается в общий приемный бункер, из которого загружается в бункер-плавилку, обогреваемую паром. Расплавленная сера при 130 -140°С по серопроводу стенает в ванну-отстойник. Бункера-плавилки снабжены змеевиками, по которым идет пар, или рубашками, обогреваемыми также паром или подогретым воздухом.
В настоящее время для сжигания расплавленной серы широко применяются циклонные печи. Поток воздуха и жидкая сера вводятся в эти печи тангенциально (по касательной) со скоростью 100—120 м/с. Это способствует хорошим условиям массо- и теплообмена паров серы с воздухом. Скорость горения при этом повышается. Благодаря тому, что процесс сжигания ведется с небольшим избытком воздуха (а—1,15—1,2), получают газ с концентрацией 16—18% SCb-. Интенсивность таких печей в 30—40 раз выше, чем печей форсуночных. Достоинствами циклонных печей являются еще постоянство концентрации газа, простота регулирования процесса сжигания и простота схемы автоматизации его. Однако высокая температура в таких печах (1200—1400° С) создает сложности при конструировании и использовании их в промышленности. Таким образом, концентрация SO2 в газе после циклонной печи зависит от температуры газа, определяемой стойкостью футеровки.
Циклонная печь для сжигания серы (рис. 5.2) состоит из двух горизонтальных цилиндров - форкамеры 1 и- двух камер дожигания 3 и 5. Пена имеет воздушный короб (рубашку) 2 дли снижения температуры наружной обшивки печи и предупреждения утечки сернистого ангидрида. В форкамеру через две группы сопл 7 тангенциально подастся воздух, через форсунку механического типа 8 также тангенциально подается расплавленная сера.
Образующийся при сжигании жидкой серы обжиговый газ вместе с парами серы поступает через пережимное кольцо 6 из форкамеры в первую камеру дожигания 5 (диаметр 1,5 м), в которой также расположены воздушные сопла 9 и форсунки для подачи серы 10. Из нерпой камеры дожигания газ через пережимные кольца 4 поступает во вторую камеру дожигания 3, где сгорают остатки серы (между пережимными кольцами 4 к газу добавляют воздух).
Из печи обжиговый газ поступает в котел-утилизатор Н далее в последующую аппаратуру.
Циклонная печь для сжигания серы разработана в СССР и впервые была внедрена на отечественных заводах в нескольких вариантах, отличающихся числом камер, способом ввода вторичного воздуха, устройством пережимных колец и др. Общая особенность этил печен состоит в том, что как в форкамере, так и в камерах дожигания создастся вращательное движение газа, обеспечивающее хорошее перемешивание паров серы с воздухом и высокую скорость горения серы.
Рис. 5.2. Циклонная печь:
1-форкамера, 2 —воздушный короб, 3, 5—камеры дожигания, 4,6- пережимные кольца, 7, 9 — сопла для подачи воздуха. 8,10 — форсунки для подачи серы
В последние годы создан серный энерготехнологический агрегат циклонного типа производительностью 100 т серы в сутки, включающий циклонную топку и котел-утилизатор. Этот агрегат назван СЭТА-Ц-100.
Печи дли сжигании серы экономически более выгодны, чем печи для сжигания колчедана, так как проще ее конструкции. Кроме того, при сгорании серы не образуется огарка, удаление которого представляет трудоемкую операцию.
Содержание примесей в сере может привести к ухудшению теплопередачи в плавилках и засорению форсунок, а также к засорению контактной массы (в случае, когда серная кислота получается, но короткой схеме). Поэтому расплавленная сера отстаивается и фильтруется. За границей иногда фильтруют не серу, а газ получаемый при ее сжигании. Для этого используют пористые газовые фильтры.
В последние годы все более широко применяют очистку серы на месте ее добычи с последующей перевозкой жидкой серы (подогретой до 140° С) в цистернах и танкерах. Однако не достаточно освободиться только от твердых примесей в расплавленной сере. Содержание в сере органических примесей приводит к образованию воды при сгорании их в печи. При этом в короткой схеме, в которой газ перед контактным аппаратом не осушивается, в абсорбционном отделении образуется туман серной кислоты и абсорбция «газит». Иногда на фильтрующий слой наносятся специальные добавки, дающие возможность снизить в сере содержание органических веществ. Например, фильтрация серы через специальные вещества (палытарскит) позволяет снизить в абсорбционном отделении образование тумана[5].
6. Экологическая оценка производства
В производстве серной кислоты вредными веществами являются: серная кислота, оксиды серы, олеум. Серная кислота и олеум представляют собой агрессивные жидкости, которые действуют разрушающим образом на растительные, животные ткани и вещества, отнимая у них воду, вследствие чего они обугливаются.
Аэрозоль серной кислоты. ПДК аэрозоля серной кислоты в воздухе:
ПДКр.з. = 1,0 мг/м3 (рабочей зоны),
ПДКм.р. = 0,3 мг/м3 (максимально разовая),
ПДКс.с. = 0,1 мг/м3 (среднесуточная).
Поражающая концентрация паров серной кислоты 0,008 мг/л (экспозиция 60 мин), смертельная 0,18 мг/л (60 мин). Класс опасности 2. Аэрозоль серной кислоты может образовываться в атмосфере в результате выбросов химических и металлургических производств, содержащих оксиды серы, и выпадать в виде кислотных дождей [10].
Оксид серы (IV) и взвешенные частицы. Основной процесс, приводящий к образованию взвешенных частиц и диоксида серы, – это процесс горения, осуществляемый в печи сжигания серы. Диоксид серы – бесцветный газ. Источники те же, что и для взвешенных частиц. Вступает в каталитические или фотохимические реакции с другими загрязняющими веществами с образованием SO3, серной кислоты и сульфатов [6].
Класс опасности (токсичности) диоксида серы 3. ПДКр.з. = 10,0 мг/м3, ПДКм.р. = 0,5 мг/м3, ПДКс.с. = 0,03 мг/м3.
Частицы, образующиеся в результате сгорания – сажа, копоть, пыль, – обычно имеют размер менее 1 мкм, так что они могут легко приникать в легочные альвеолы. Они также могут содержать опасные вещества, такие как асбест, тяжелые металлы, мышьяк. Оксиды металлов являются основным классом неорганических частиц в атмосфере. Они образуются в любых процессах, связанных со сжиганием топлива, содержащего металлы.
Класс опасности сажи 3. ПДКр.з. = 4,0 мг/м3, ПДКм.р. = 0,15 мг/м3, ПДКс.с. = 0,05 мг/м3.
Класс опасности нетоксичной пыли 4. ПДКр.з. = 6,0 мг/м3, ПДКм.р. = 0,5 мг/м3, ПДКс.с. = 0,15 мг/м3.
В промышленных районах концентрация диоксида серы обычно достигает 0,05-0,1 мг/м3; в сельских районах она в несколько раз меньше, а над океаном меньше в 10-100 раз. В сельской местности фоновая концентрация близка к 0,5 мкг/м3, а концентрация в городах в 50-100 раз выше. Из-за химических превращений время жизни диоксида серы в атмосфере невелико (порядка нескольких часов). В связи с этим возможность загрязнения и опасность воздействия непосредственно диоксида серы носят, как правило, локальный, а в отдельных случаях региональный характер.