Смекни!
smekni.com

Кинетические методы анализа (стр. 3 из 4)

dx/ dt = K CK [A][B], (16)

где СК – концентрация катализатора.

Концентрацию одного из участников реакции, например, вещества В, можно взять заведомо в большом избытке, так что его убыль в результате протекания реакции будет пренебрежимо мала, и, следовательно можно записать kb = χ, тогда

dx /dt = χ CK [A]. (17)

На рис. 1 приводятся типичные кинетические кривые. График показывает возрастание во времени концентрации вещества Х. Кривая 1 в начальный момент времени имеет линейный участок, т.е. в начальный момент времени угловой коэффициент кинетической кривой постоянен. На кривой 2 линейный участок даже в начальный момент времени отсутствует. Различный характер кинетических кривых вызывает разные способы их обработки.


Рис.1 . Кинетические кривые.

Рассмотрим сначала кривую 1. Уравнение (17) показывает, что величина dx/dt может быть постоянной только при условии постоянства [А], т.е. если концентрация вещества А в ходе реакции существенно меняться не будет. Это уравнение является основой различных вариантов кинетического метода, названных дифференциальными. Интегрирование дает:

х = χ СК [А] t. (18)

Несколько сложнее обработка данных, представленных кривой 2. Здесь нет области, в которой [А] = const, поэтому приходится интегрировать кинетическое уравнение (17).Разделив переменные и проинтегрировав, получаем

∫dx /(a – x) = ∫ χ CK dt

или

-ln (a – x) = χ CK t + const.

Постоянную интегрирования находим из начальных условий: при t = 0, х = 0 и, следовательно, - ln а = const . Окончательно можно записать:

ln a / (a – x) = χ CK t. (19)

Методы анализа, основанные на применении этого уравнения, называют интегральными.

4.ОСНОВНЫЕ ПРИЕМЫ КИНЕТИЧЕСКИХ МЕТОДОВ АНАЛИЗА

Уравнения (17) – (19) в явном виде связывают кинетические характеристики реакции с концентрацией катализатора. Как видно, концентрация катализатора может быть найдена или непосредственно по скорости реакции, или по времени ее протекания, или по концентрации образующихся продуктов. В зависимости от того, какое свойство или какая характеристика реакции используется для определения концентрации, выделяют методы тангенсов, фиксированного времени, фиксированной концентрации.

Известны, кроме того, и другие методы, имеющие более частный характер, например методы индукционного периода, непосредственного дифференцирования и т.д.

Метод тангенсов.

В методе тангенсов измеряют скорость реакции обычно по возрастанию концентрации одного из образующихся продуктов и строят график, аналогичный изображенному на рис.1. Если кинетическая кривая в начальный период протекания реакции имеет линейчатый характер, применяют дифференциальный вариант метода тангенсов. Уравнение ( 17) показывает, что в этом случае скорость реакции dx /dt , характеризуемая тангенсом угла наклона кинетической кривой, пропорциональна концентрации катализатора.

График в координатах тангенс угла наклона – концентрация определяемого вещества ( отсюда название «метод тангенсов») обычно линеен При анализе неизвестного раствора измеряют скорость реакции в тех же условиях, в каких она определялась для построения градуировочного графика, определяют tg α и по градуировочному графику находят концентрацию анализируемого компонента сх.


Рис.2. Градуировочный график в методе тангенсов.

Если кинетическая кривая имеет вид кривой 2 на рис.1, т.е. линейный участок отсутствует, применяется интегральный вариант метода тангенсов. В соответствии с уравнением (19) кинетическую кривую следует строить в координатах lg a / (a – x) – t. Тангенс угла наклона прямой в этих координатах, как показывает уравнение (19) , пропорционален концентрации катализатора и, следовательно, градуировочный график будет также линеен.

Для измерения текущей концентрации очень удобны фотометрические методы, так как оптическая плотность раствора прямо пропорциональна концентрации вещества. При построении кинетической кривой на оси ординат вместо концентрации можно откладывать оптическую плотность: тангенс угла наклона для построения градуировочного графика можно вычислять как dA /dt. Метод тангенсов с успехом применяется для самых различных реакций, по точности определения он превосходит все остальные варианты кинетических методов.

Метод фиксированного времени

В методе фиксированного времени определяют концентрацию одного из участников реакции за строго определенный промежуток времени. Если, например, продукт реакции окрашен, через определенный промежуток времени измеряют оптическую плотность раствора. При небольшой глубине протекания реакции применяют дифференциальный вариант. Из уравнения (18) получаем

C = x / χat = (1/χat) x,

где t – заданный промежуток времени.

Выражение в скобках постоянно, так как а и t фиксированы. Его числовое значение может быть использовано для последующих расчетов ск по измеренной величине х. Практически можно поступать следующим образом. Готовят серии растворов с переменной и известной концентрацией СА ( при СВ = const), измеряют через определенный промежуток времени (t = const) количество прореагировавшего вещества х и строят градуировочный график (рис.3), откладывая на оси ординат х, а на оси абсцисс – концентрацию СА. По этому графику легко установить затем концентрацию СА в анализируемом растворе, поставив аналогичный эксперимент с раствором, в котором содержание СА неизвестно. Вполне понятно, что фиксированный отрезок времени сохраняется один и тот же как при построении градуировочного графика, так и при анализе неизвестного раствора. При большой глубине протекания реакции применяется интегральный вариант, основанный на решении уравнения (19) относительно ск. Метод фиксированного времени, как видно, проще метода тангенсов, однако по точности он ему уступает.


Рис.3. Градуировочный график в методе фиксированного времени.

Метод фиксированной концентрации

В методе фиксированной концентрации измеряют время, в течение которого концентрация продукта реакции или одного из реагирующих веществ достигает определенного, заранее заданного значения. Этот метод по сути близок методу фиксированного времени. Если глубина протекания реакции невелика, используют дифференциальный вариант, так же как и в методе фиксированного времени, основаной на решении уравнения (18) относительно ск:

Ck = x / χat = ( x / χa) 1/t, (20)

где х – заданная концентрация продукта реакции.

Выражение в скобках постоянно, поскольку постоянны х и а, его числовое значение может быть определено по стандартному раствору. Градуировочный график в методе фиксированной концентрации, как показывает уравнение (20) , следует строить в координатах ск - 1/t , где ск – определяемая концентрация, а t – время, необходимое для достижения заданной концентрации продукта реакции.

При более глубоком протекании реакции испльзуется интегральный вариант, основанный на решении уравнения (19):

Ck = (ln a / (a – x) 1/χ) 1 /t.

Градуировочный график, как видно, следует строить также в координатах ск - 1/t. По точности метод фиксированной концентрации близок к методу фиксированного времени и уступает методу тангенсов.

Метод добавок

Этот метод обладает известными достоинствами. Сначала оапределяют скорость химической реакции в анализируемом растворе, содержащем определяемый компенент неизвестной концентрации сх , а затем в анализируемые раствор добавляют точно известное количество определяемого компонента и вновь измеряют скорость реакции.

Метод каталиметрического титрования

Сущность этого метода можно пояснить на примере церий-арсенитной реакции, которая катализируется осмием, рутением и иодидом:

2Ce(SO4)2 + HAsO2 + 2H2O = Ce2(SO4)3 + H3AsO4 + H2SO4

Так как иодид является катализатором реакции церия с арсенитом, скорость этой реакции будет возрастать с увеличением концентрации иодида. Ионы Аg+ обладают ингибиторным эффектом, блокируя катализатор. При введении в раствор ионов Аg+ происходит образованиеAgI , и концентрация I- падает, вызывая соответствующее уменьшение скорости церий-арсенитной реакции. При каталиметрическом титровании к анализируемому раствору, содержащему иодид -ион I- в церий-арсенитной смеси, несколькими порциями добавляют титрованный раствор AgNO3 и определяют скорость реакции. Точку эквивалентности находят из графика в координатах: объем раствора AgNО3 – скорость реакции, характеризуемая угловым коэффициентом dx/dt. Этим методом можно оттитровывать иодтд в очень разбавленных растворах ( 10-6 моль/л и меньше).

5. ПРИМЕНЕНИЕ КИНЕТИЧЕСКОГО МЕТОДА АНАЛИЗА В АНАЛИТИЧЕСКОМ КОНТРОЛЕ