Смекни!
smekni.com

Исследование кинетики реакции хлорирования бензола (стр. 3 из 3)

№опыта 9
Т, мин Ln(C01/C1)
4 0,0122413
8 0,0239512
12 0,0345914
16 0,0483153
20 0,0616981
24 0,0723915
32 0,0955936
40 0,1184082

Как видно из уравнений прямых на диаграммах, значение Кнабл для всех опытов, кроме последних двух, одинаково и равно 0,001. Значит, в последних двух опытах действует какой-то другой параметр системы. Причем явно видно, что от концентрации хлора Кнабл совсем не зависит, т. к. для всех первых 7 опытов значение константы одинаково, но значение начальной концентрации хлора разное.

Если предположить, что в кинетическом уравнении вместо [A2] стоит суммарная концентрация катализатора, то тенденция в изменении Кнабл выглядит закономерной:

Кнабл Ск
0,001 0,1
0,002 0,2
0,003 0,3

Определение значения константы скорости методом наименьших квадратов

Метод заключается в следующем:

R = k•C1•Ck∑

можно представить в виде уравнения прямой: у = Вх, где y=R, B=k, x=C1•Ck∑.

Домножая правую и левую часть уравнения у = Вх на х, получим квадратичное уравнение ух = Вх2.

Значение константы вычислим как: В = ух / х2.

№опыта

1 2 3 5 4 6 7 8 9
R R R R R R R R R
0,0056 0,0056 0,0056 0,0056 0,0051 0,0036 0,0015 0,0115 0,0167
С1•Сk С1•Сk С1•Сk С1•Сk С1•Сk С1•Сk С1•Сk С1•Сk С1•Сk
0,5925 0,5927 0,5928 0,5931 0,5921 0,392 0, 192 1,1854 1,7781
(С1•Сk) 2 (С1•Сk) 2 (С1•Сk) 2 (С1•Сk) 2 (С1•Сk) 2 (С1•Сk) 2 (С1•Сk) 2 (С1•Сk) 2 (С1•Сk) 2
0,351056 0,351293 0,351412 0,351768 0,350582 0,153664 0,036864 1,405173 3,16164
R•C1•Ck R•C1•Ck R•C1•Ck R•C1•Ck R•C1•Ck R•C1•Ck R•C1•Ck R•C1•Ck R•C1•Ck
0,003318 0,003319 0,00332 0,003321 0,00302 0,001411 0,000288 0,013632 0,029694
B=YX/X2 B=YX/X2 B=YX/X2 B=YX/X2 B=YX/X2 B=YX/X2 B=YX/X2 B=YX/X2 B=YX/X2
0,009451 0,009448 0,009447 0,009442 0,008613 0,009184 0,007813 0,009701 0,009392
Bсред= k = 0,00917

Среднее значение константы скорости по методу наименьших квадратов равно k=0,00917 [л/(моль•ч)]. Причем при умножении на Ск∑ значение константы, рассчитанное по методу наименьших квадратов, примерно совпадает со значением Кнабл, рассчитанным интегральным методом.

Статистическая обработка полученной кинетической модели

R = k•C1•Ck∑

Для наилучшей обработки полученной модели проведем преобразование вида функции, т. к. зависимость скорости реакции от времени постоянна и для первых 3 опытов равна 0,0056. Скорость реакции получилась константа в результате дифференцирования по времени функции зависимости концентрации продукта реакции (хлорбензола) от времени.

1/С1= k•Ck/R

№ опыта

1 2 3 матрицаХ 1 2 3
C1 С1 С1 C1сред Ск/R 1/C1 1/C1 1/C1 1/C1сред

Продолжение.

5,925 5,927 5,928 5,9267 17,8571 0,1732 0,1720 0,1720 0,1724
5,86 5,853 5,859 5,8573 17,8571 0,1761 0,1766 0,1768 0,1765
5,79 5,778 5,784 5,7840 17,8571 0,1727 0,1731 0,1729 0,1729
5,731 5,711 5,726 5,7227 17,8571 0,1745 0,1751 0,1746 0,1747
5,643 5,667 5,638 5,6493 17,8571 0,1772 0,1765 0,1774 0,1770
5,57 5,566 5,574 5,5700 17,8571 0,1795 0,1797 0,1794 0,1795
5,469 5,455 5,46 5,4613 17,8571 0,1809 0,1807 0,1813 0,1810
5,344 5,308 5,324 5,3253 17,8571 0,1813 0,1816 0,1817 0,1815

Обозначим Ck/R = Х, 1/С1 = У. Вычисления проводим, как описано выше.

Ковариационная матрица:

(XтX) - 1
0,000392

Полученная матрица коэффициента содержит 1 ячейку, где В= 0,0099.Т. е. значение константы скорости получили равным 0,0099 [л/(моль•ч)].

где k= 0,01 [л/(моль•ч)].

Статистическую обработку проводят по воспроизводимым опытам.

Значение дисперсии воспроизводимости Sвоспр= 1,41907∙10-7

Значение дисперсии неадекватности Sнеад= 3,14∙10-9;

Значение остаточной дисперсии Sост= 1,87∙10-9.

Критерий Фишера F= 3,1; табличное значение Ft= 3,2 для f1= 7, f2= 16. F<Ft – модель адекватна.

Формулы для расчета статистики (٭ )

Расчет дисперсии воспроизводимости

Предварительно считают дисперсию для каждого отдельного опыта:

Su2= (∑(yui-yсред) 2) /f,

где f2 = l-1 – число степеней свободы дисперсии воспроизводимости с учетом того, что 1 степень свободы потрачена на вычисление среднего значения;

l – число повторяющихся воспроизводимых опытов.

Среднее значение дисперсии воспроизводимости по всем опытам:

Sy2= ∑ Su2/n,

где n – число последовательных опытов.

В нашем случае l= 3, n= 8.

Расчет дисперсии неадекватности

S2неад= l∙(∑(yuрасч - yсред) 2) /(n-m)

где m – число коэффициентов модели.

n-m = f1 – число степеней свободы дисперсии неадекватности.

Критерий Фишера

F = S2неад / Sy2

Значение критерия Фишера расчетное сравнивают с табличным значением для соответствующих f1 и f2. Если F<Ft, то модель адекватна и производят дальнейший расчет значимости коэффициентов уравнения модели по критерию Стьюдента. Если модель неадекватна, то рассматривают другую модель.

Анализ коэффициентов

Производят оценку точности определения коэффициентов и анализ их значимости.

Дисперсия коэффициентов:

Sbj2= CjiSy2

где Сji – диагональные элементы ковариационной матрицы.

Критерий Стьюдента:

tj = |bj| / √ Sbj2

Полученное значение критерия сравнивают с некоторым критическим значением, которое находят по таблице для числа степеней свободы f2. Если tj больше критического, то соответствующий коэффициент незначим и может быть исключен из уравнения. После исключения какого-то коэффициента анализ адекватности повторяют.

Расчет дисперсии остаточной

Soc2= (∑∑(yui – ycp) 2) / (nl – m)

Подбор подходящего механизма реакции

Допустим, что реализуется следующий механизм нуклеофильного замещения SN2:

Cl2 + FeCl3 → FeCl4 - + Cl+, k1

C6H6 + Cl+ → C6H5Cl + H+, k2

H+ + FeCl4-↔ FeCl3 + HCl, k3

Кинетическое уравнение для механизма SN2 выглядит следующим образом:

R = d [C6H5Cl] / dt = k2 [C6H6] [Cl+],

Скорость реакции по SN2 зависит от концентрации начального субстрата и нуклеофила. В качестве нуклеофила выступает частица Cl+.Т. к. концентрация хлора поддерживается постоянной, то ограничивающим фактором для количества образованной частицы Cl+ будет концентрация катализатора.Т. е. частиц Cl+ не может образоваться больше, чем присутствует в системе катализатора.Т. к. катализатор не образуется и не расходуется в системе, то в кинетическое уравнение войдет его суммарная концентрация.

Таким образом, получаем следующее кинетическое уравнение:

R = k2 [C6H6] [FeCl3] ∑, где [C6H6] = С1, [FeCl3] = Ск.

Первая стадия является лимитирующей.

Вид кинетического уравнения совпадает с выведенным по расчетам, значит, наш механизм является подходящим для описания эксперимента.

Список используемой литературы

1. К.Ю. Одинцов, Л.Г. Брук, О.Н. Темкин, "Статистическая обработка результатов кинетических исследований". – М.: МИТХТ, 2000, 52с.