№опыта | 9 |
Т, мин | Ln(C01/C1) |
4 | 0,0122413 |
8 | 0,0239512 |
12 | 0,0345914 |
16 | 0,0483153 |
20 | 0,0616981 |
24 | 0,0723915 |
32 | 0,0955936 |
40 | 0,1184082 |
Как видно из уравнений прямых на диаграммах, значение Кнабл для всех опытов, кроме последних двух, одинаково и равно 0,001. Значит, в последних двух опытах действует какой-то другой параметр системы. Причем явно видно, что от концентрации хлора Кнабл совсем не зависит, т. к. для всех первых 7 опытов значение константы одинаково, но значение начальной концентрации хлора разное.
Если предположить, что в кинетическом уравнении вместо [A2] стоит суммарная концентрация катализатора, то тенденция в изменении Кнабл выглядит закономерной:
Кнабл | Ск |
0,001 | 0,1 |
0,002 | 0,2 |
0,003 | 0,3 |
Метод заключается в следующем:
R = k•C1•Ck∑
можно представить в виде уравнения прямой: у = Вх, где y=R, B=k, x=C1•Ck∑.
Домножая правую и левую часть уравнения у = Вх на х, получим квадратичное уравнение ух = Вх2.
Значение константы вычислим как: В = ух / х2.
№опыта
1 | 2 | 3 | 5 | 4 | 6 | 7 | 8 | 9 | ||||||||
R | R | R | R | R | R | R | R | R | ||||||||
0,0056 | 0,0056 | 0,0056 | 0,0056 | 0,0051 | 0,0036 | 0,0015 | 0,0115 | 0,0167 | ||||||||
С1•Сk | С1•Сk | С1•Сk | С1•Сk | С1•Сk | С1•Сk | С1•Сk | С1•Сk | С1•Сk | ||||||||
0,5925 | 0,5927 | 0,5928 | 0,5931 | 0,5921 | 0,392 | 0, 192 | 1,1854 | 1,7781 | ||||||||
(С1•Сk) 2 | (С1•Сk) 2 | (С1•Сk) 2 | (С1•Сk) 2 | (С1•Сk) 2 | (С1•Сk) 2 | (С1•Сk) 2 | (С1•Сk) 2 | (С1•Сk) 2 | ||||||||
0,351056 | 0,351293 | 0,351412 | 0,351768 | 0,350582 | 0,153664 | 0,036864 | 1,405173 | 3,16164 | ||||||||
R•C1•Ck | R•C1•Ck | R•C1•Ck | R•C1•Ck | R•C1•Ck | R•C1•Ck | R•C1•Ck | R•C1•Ck | R•C1•Ck | ||||||||
0,003318 | 0,003319 | 0,00332 | 0,003321 | 0,00302 | 0,001411 | 0,000288 | 0,013632 | 0,029694 | ||||||||
B=YX/X2 | B=YX/X2 | B=YX/X2 | B=YX/X2 | B=YX/X2 | B=YX/X2 | B=YX/X2 | B=YX/X2 | B=YX/X2 | ||||||||
0,009451 | 0,009448 | 0,009447 | 0,009442 | 0,008613 | 0,009184 | 0,007813 | 0,009701 | 0,009392 | ||||||||
Bсред= k = | 0,00917 |
Среднее значение константы скорости по методу наименьших квадратов равно k=0,00917 [л/(моль•ч)]. Причем при умножении на Ск∑ значение константы, рассчитанное по методу наименьших квадратов, примерно совпадает со значением Кнабл, рассчитанным интегральным методом.
R = k•C1•Ck∑
Для наилучшей обработки полученной модели проведем преобразование вида функции, т. к. зависимость скорости реакции от времени постоянна и для первых 3 опытов равна 0,0056. Скорость реакции получилась константа в результате дифференцирования по времени функции зависимости концентрации продукта реакции (хлорбензола) от времени.
1/С1= k•Ck/R
№ опыта
1 | 2 | 3 | матрицаХ | 1 | 2 | 3 | ||
C1 | С1 | С1 | C1сред | Ск/R | 1/C1 | 1/C1 | 1/C1 | 1/C1сред |
Продолжение.
5,925 | 5,927 | 5,928 | 5,9267 | 17,8571 | 0,1732 | 0,1720 | 0,1720 | 0,1724 |
5,86 | 5,853 | 5,859 | 5,8573 | 17,8571 | 0,1761 | 0,1766 | 0,1768 | 0,1765 |
5,79 | 5,778 | 5,784 | 5,7840 | 17,8571 | 0,1727 | 0,1731 | 0,1729 | 0,1729 |
5,731 | 5,711 | 5,726 | 5,7227 | 17,8571 | 0,1745 | 0,1751 | 0,1746 | 0,1747 |
5,643 | 5,667 | 5,638 | 5,6493 | 17,8571 | 0,1772 | 0,1765 | 0,1774 | 0,1770 |
5,57 | 5,566 | 5,574 | 5,5700 | 17,8571 | 0,1795 | 0,1797 | 0,1794 | 0,1795 |
5,469 | 5,455 | 5,46 | 5,4613 | 17,8571 | 0,1809 | 0,1807 | 0,1813 | 0,1810 |
5,344 | 5,308 | 5,324 | 5,3253 | 17,8571 | 0,1813 | 0,1816 | 0,1817 | 0,1815 |
Обозначим Ck/R = Х, 1/С1 = У. Вычисления проводим, как описано выше.
Ковариационная матрица:
(XтX) - 1 |
0,000392 |
Полученная матрица коэффициента содержит 1 ячейку, где В= 0,0099.Т. е. значение константы скорости получили равным 0,0099 [л/(моль•ч)].
где k= 0,01 [л/(моль•ч)].
Статистическую обработку проводят по воспроизводимым опытам.
Значение дисперсии воспроизводимости Sвоспр= 1,41907∙10-7
Значение дисперсии неадекватности Sнеад= 3,14∙10-9;
Значение остаточной дисперсии Sост= 1,87∙10-9.
Критерий Фишера F= 3,1; табличное значение Ft= 3,2 для f1= 7, f2= 16. F<Ft – модель адекватна.
Предварительно считают дисперсию для каждого отдельного опыта:
Su2= (∑(yui-yсред) 2) /f,
где f2 = l-1 – число степеней свободы дисперсии воспроизводимости с учетом того, что 1 степень свободы потрачена на вычисление среднего значения;
l – число повторяющихся воспроизводимых опытов.
Среднее значение дисперсии воспроизводимости по всем опытам:
Sy2= ∑ Su2/n,
где n – число последовательных опытов.
В нашем случае l= 3, n= 8.
S2неад= l∙(∑(yuрасч - yсред) 2) /(n-m)
где m – число коэффициентов модели.
n-m = f1 – число степеней свободы дисперсии неадекватности.
F = S2неад / Sy2
Значение критерия Фишера расчетное сравнивают с табличным значением для соответствующих f1 и f2. Если F<Ft, то модель адекватна и производят дальнейший расчет значимости коэффициентов уравнения модели по критерию Стьюдента. Если модель неадекватна, то рассматривают другую модель.
Производят оценку точности определения коэффициентов и анализ их значимости.
Дисперсия коэффициентов:
Sbj2= CjiSy2
где Сji – диагональные элементы ковариационной матрицы.
Критерий Стьюдента:
tj = |bj| / √ Sbj2
Полученное значение критерия сравнивают с некоторым критическим значением, которое находят по таблице для числа степеней свободы f2. Если tj больше критического, то соответствующий коэффициент незначим и может быть исключен из уравнения. После исключения какого-то коэффициента анализ адекватности повторяют.
Soc2= (∑∑(yui – ycp) 2) / (nl – m)
Допустим, что реализуется следующий механизм нуклеофильного замещения SN2:
Cl2 + FeCl3 → FeCl4 - + Cl+, k1
C6H6 + Cl+ → C6H5Cl + H+, k2
H+ + FeCl4-↔ FeCl3 + HCl, k3
Кинетическое уравнение для механизма SN2 выглядит следующим образом:
R = d [C6H5Cl] / dt = k2 [C6H6] [Cl+],
Скорость реакции по SN2 зависит от концентрации начального субстрата и нуклеофила. В качестве нуклеофила выступает частица Cl+.Т. к. концентрация хлора поддерживается постоянной, то ограничивающим фактором для количества образованной частицы Cl+ будет концентрация катализатора.Т. е. частиц Cl+ не может образоваться больше, чем присутствует в системе катализатора.Т. к. катализатор не образуется и не расходуется в системе, то в кинетическое уравнение войдет его суммарная концентрация.
Таким образом, получаем следующее кинетическое уравнение:
R = k2 [C6H6] [FeCl3] ∑, где [C6H6] = С1, [FeCl3] = Ск.
Первая стадия является лимитирующей.
Вид кинетического уравнения совпадает с выведенным по расчетам, значит, наш механизм является подходящим для описания эксперимента.
1. К.Ю. Одинцов, Л.Г. Брук, О.Н. Темкин, "Статистическая обработка результатов кинетических исследований". – М.: МИТХТ, 2000, 52с.