Напрям реакцій електрофільного приєднання до цього аддукту помітно відрізняється від результатів, знайдених для аддуктів циклооктатетраєна із звичайними дієнофілами, для яких утворюються в основному продукти кросс- і цис-приєднання електрофільних реагентів.
На відміну від циклооктатетраєна циклогептатриєн реагує з фулереном в обох ізомерних формах — і як циклогептатрієн, і як норкарадієн, причому кінетично контрольованим продуктом є аддукт, що утворюється з норкарадієна. Інший спосіб утворення аддукта [4+2]-циклоприєднання між фулереном і норкарадієнами використаний в роботі, де до толуольного розчину фулерена і трет-бутилдіазоацетата (1:3) додавали діацетат родія. Той, що утворюється карбеноїд реагує з більш термодинамічно стійким толуолом, даючи похідну норкарадієна. Остання і взаємодіє з фулереном по реакції Дільса—Альдера з 43% виходом циклоаддукта (на основі фулерена, що прореагував). При цьому вихід метанофулерена складає лише 4%.
При проведенні аналогічної реакції в бензольному розчині вихід аддукта Дільса—Альдера складає 24%. Анти-екзо орієнтація циклоприєднання пояснюється значними стеричними вимогами трет-бутоксикарбонільної групи. Отримані циклоаддукти далі можна трансформувати у відповідну кислоту та/або інші її похідні.
[4+2]-Циклоприєднання стає необоротним, якщо подвійний зв'язок циклоаддукта, що утворюється, включений в ароматичну систему, як у випадку реакції ізобензофурана. Більшість подібних дієнів, похідних орто-хінодиметана, нестабільні через легко протікаючу ароматизацію. Генерація орто-хінодиметанів in situ — важливий спосіб отримання реакційнозддатних дієнів, вступаючих в необоротну реакцію [4+2]-циклоприєднання з фулереном С60. Існує ряд методів генерації ортохінодиметанів. Найбільш часто для цієї мети використовується йодидіндуковане 1,4-дегідрогалогенування орто-біс(бромометил) бензолів. Цей метод не раз використовувався для утворення аддуктів Дільса—Альдера з фулереном С60. Як характерний приклад приведемо нагрівання 1,2-біс(бромометил)-4,5-диметоксибензола з йодидом тетрабутиламонія в толуолі:
Аналогічним шляхом отримували аддукти фулерена з 1,4-диметокси- і 1,4-дигідрокси-2,3-біс(бромометил)автрахіноном, фулеренотіофени і фулеренохіноксаліни:
Швидкість реакції і вихід продукту помітно збільшуються при дії ультразвука (для 2,3-біс(бромометил)хіноксаліна вихід аддукта Дільса—Альдера рівний 13% після 24 год кип'ятіння в о-дихлорбензолі і 26% — через 30 хв реакції під дією ультразвука).
Реакцією фулерена з дієнами, що генеруються з відповідних орто-біс(бромометил)аренів, отримані фотоактивні з'єднання, що містять як електронноакцепторний фулереновый фрагмент, так і електроннодонорний тетратіафульваленовий фрагмент або його аналоги:
На відміну від дії NaI/18-краун-6, обробка 2,3-біс(бромо- метил)[2.2.2]окта-2,5-дієна трет-бутилатом калія дає в результаті дегідрогалогенування бромодієн. Що утворився в результаті взаємодії з фулереном аддукт цього дієна нестійкий і відщеплює НВг за умов реакції. В результаті утворюється похідне фулероциклогексадієна, яке, проте, недостатньо стабільно для виділення і розкладається, утворюючи незвичайний фулероїд:
Інший спосіб генерації похідних орто-хінодиметана полягає у фотохімічній ізомеризації о-толуальдегіда і його аналогів:
Виходи циклоаддуків, основані на поглиненому фулерені, складають в цій реакції 63-87%. Застосовуваність даного підходу здається вельми обмеженою. При опромінюванні о-метилбензофенона в присутності С60 спочатку утворюється циклоаддукт нестійкий і розщеплюється, утворюючи 1-(2-бензоїлфеніл)метил-1,2-дигідро-фулерен:
Це розщеплення викликане, однак, нестабільністю аддукта Дільса—Альдера, що утворюється в результаті перенесення протона від гідроксигрупи, оскільки при генерації дієна термічно індукованим перегруповуванням 3-фенілбензоциклобутенола, замість аддукта [4+2]- циклоприєднання також отриманий продукт, відповідний гідроалкілуванню. Дійсно, нагрівання 3-феніл-3-метоксибензоциклобутенона з фулереном дає продукт циклоприєднання, стійкий при тривалому кип'ятінні в толуолі. Стійкий і аддукт, отриманий термолізом 1-бутил-1-гідроксибензоциклобутена.
Термоліз бензоциклобутенів — загальний спосіб генерації ортохінодиметанів, у тому числі для отримання досить незвичайних циклоаддуктів:
Нагрівання фулерена і 3,6-дигідроксибензоциклобутенів з подальшим окисненням аддукта 2,3-дихлор-5,б-диціан-1,4-бензохіноном, що утворився дає фулеробензохінони (Х=Н,Cl):
Цей метод особливо зручний для синтезу фулеротетралінів, що містять різні замісники при бензильному атомі вуглецю, наприклад, гідрокси- і ацилоксизаміщенні похідні:
Аналогічно реагують і бензоциклобутени з карбоксильним замісником:
Нагрівання бензоциклобутенона в о-дихлорбензолі у присутності фулерена протікає аналогічно, даючи фулеротетралін:
Цей же підхід використаний для отримання фулеренвмісних високомолекулярних сполук, для чого використовували похідну біс(бензоциклобутена):
Нагрівання 1,2-біс(триметилсилилокси)циклобутена з 0,6 екв. фулерена в 1,2-дихлорбензолі веде до утворення моноаддукта гідроліз якого дає описаний раніше ацилоін з сумарним виходом 50% (89% на основі того, що прореагував фулерена), а низькотемпературна обробка бромом веде до нестабільного дикетону, який може бути виділений або у вигляді біс(О-метил)оксима, або перетворений in situ в похідні феназіна:
На відміну від реакцій більшості інших бензоциклобутенів, циклоаддукт фулерена з 1,1,2,2-тетраізопропілбензо-1,2-дисилациклобутеном вдається виділити лише при опромінюванні в присутності трет-бутилового спирту, тоді як у відсутності спирту фулерен повністю поглинається, але утворюється суміш, що не ідентифікується.
Гетероциклічні похідні фулерена можна одержувати також реакцією Дільса—Альдера між фулереном і гетеродієном. Останні звичайно генеруються in situ. Наприклад, 1-аза-заміщені дієни одержували декарбоксилюванням похідних 3,1-бензоксазин-2-она.
Термоліз о-амінобензилових спиртів приводить до утворення реакційноздатних орто-хінонметидимінів, реагуючих з фулереном з утворенням фулерохінолінів:
Аналогічно, о-хінонметид, що використовується для синтезу фулерохроманів, генерували термолізом о-гідроксибензилового спирту:
Як і у випадку антрацену, реакція швидшає при дії ультразвука. Навпаки, фулеротіохроман отримували нагріванням бензотієта — тіо-аналога бензоциклобутена.
У якості дієнового фрагменту використовувалися також α,β-ненасиченні тіокарбонільні сполуки, отримані ацилюванням тіоакриламіда. На відміну від більшості інших гетеродієнів, стабільні 2-азадієни достатньо активні, щоб давати аддукти Дільса—Альдера з фулереном без помітного ретро-розпаду за умов реакції. Проте і в цьому випадку рекомендується перетворювати аддукти на більш стабільну форму аміда:
В цій реакції, не дивлячись на застосовування триразового надлишку дієна, поліаддукти знайдені не були.
Пірімідинциклобутени при нагріванні в орто-дихлорбензолі ізомеризуються у відповідні хінодиметани, реакція яких з фулереном С60 приводить до утворення хіназолінофулеренів:
Кавалейро зі співробітниками використовували альтернативний спосіб генерації орто-хінодиметанового похідного піримідина — нагрівання відповідного сульфолена:
Цей спосіб застосовувався для генерації і інших гетероциклічних похідних фулерена – піриьідонів: