Смекни!
smekni.com

Реакції 22 та 24-циклоприєднання до фулеренів С60 і С70 Механізми реакції та спектральні (стр. 5 из 6)

оліготіофенів, що містять до п’яти тіофенових кілець:

і інших сірковмісних циклів:


Термоліз сульфоленів використаний також для генерації олігомірних фулеренових похідних (n = 0 ÷ 5); сполуки з n = 0 і 1 були виділені препаративною хроматографією, а вищі олігомери охарактеризовані мас-спектрометрично:

Нагрівання фулерена з сумішшю дисульфона і сульфоно-сульфоксида дає інший тип олігомерів, додатковий тетрагідронафталіновий фрагмент, що міститься у фулереновому ядрі:

Кип'ятіння тетрасульфоленового похідного мезо-тетраарилпорфірината цинку з 10 еквівалентами порфірина в 1,2-дихлорбензолі протягом 10-15 год дає порфірин, що містить чотири фулеренових замісники:


Залежно від умов і тривалості реакції можна отримати переважно моно-, біс- і трис(фулерено)порфіринати. Аналогічно, взаємодією моносульфоленопорфірината з фулереном Монтфортс і Кутцкі отримали фулеренохлорин з мінімальним розділенням донорного і акцепторного фрагмента.

Дієни утворюються при екструзії діоксиду сірки не тільки з похідних сульфолена, але і з сультінів:

Реакції протікають швидше та ефективніше під дією ультразвука:


Алкоксизамещені аддукти далі дією ВВг3 перетворювали в дигідроксипохідні, окиснення яких дає відповідні бензохінони.

Генеруючий in situ біс-орто-хінодиметан приєднує дві молекули фулерена:

При кип'ятінні в толуолі 2,3,5,6,7,8-гексаметилиденбіцикло [2.2.2]октана з надлишком фулерена утворюється трис-аддукт Дільса— Альдера:

Іто зі співробітниками генерували дієн обробкою похідного гепта-1,6- діїна триалкілсиланом у присутності PhСI(РРh3)3. Похідне циклопента-1,2-диметилена, що утворюється, вступає в реакцію з фулереном, даючи аддукт Дільса—Альдера з 36%-вим виходом. Дієн, що утворюється можна також виділити. Реакція фулерена з очищеним дієном, протікаючи в порівнянних умовах, призводить до більш високого виходу циклоаддукта (58%).


Аналогічні результати (без виділення дієна) отримані при використанні дипропаргілового ефіру і N,N-дипропаргілтозиламіна.

Нагрівання η5-біцикло[3.2.0]гепта-1,3 -дієнового комплексу кобальту в орто-дихлорбензолі також веде до утворення дієнового фрагмента, який захоплюється присутнім фулереном, утворюючи моно- і ізомерні біс-аддукти Дільса—Альдера з виходами 28 і 12%, відповідно:

Комплекс карбоніла заліза використовувався для отримання циклоаддукта з похідним циклобутадієна, що дозволяє синтезувати не- доступні звичайними шляхами фулерен-зчленовані біцикло[2.2.0]гексани:

Фулерен поводиться в реакції Дільса—Альдера як електрон- дефіцитний дієнофіл. Отже, електрон-надлишкові дієни — найбільш підходящі реагенти для [2+4]-циклоприєднання. Численні приклади таких реакцій обговоренні вище. В той же час фулерен С60 реагує і з електрон-збитковими дієнами, демонструючи здатність вступати в реакції Дільса—Альдера із зворотними електронними вимогами. Міллер і Тетро показали, що кип’ятіння толуольного розчину 3,6-диарил-1,2,4,5-тетразинів з фулереном С60 дає фулеропіридазин з виходом 50-60%:


Проведення тієї ж реакції у присутності світла веде до утворення 4,15-дигідропохідних. Передбачається, що на світлі невелика частка тетразина відновлюється в дигідротетразин, який відновлює спочатку утворившийся аддукт Дільса— Альдера по механізму перенесення електрона/перенос протона.

Фулерен вступає в реакцію Дільса—Альдера не тільки з похідними тетразина, але і з іншими електрон-збитковими дієнами. Наприклад, Егучі з співробітниками знайшли високу ефективність циклоприєднання при нагріванні фулерена з 2-заміщеними бутадієнами. Замісник при атомі С(2) може бути як донорним (силилокси-), так і акцепторним. В результаті отримані фулерени, містять складноефірну, ціано-, кето-, сульфо- і нітро-групи:

Ті аддукти, що утворюються, проявляють підвищену стійкість до ретро-розпаду. Ця стабільність пояснена авторами як результат сполучення подвійного зв'язку продукту з акцепторним замісником.

Описані також реакції Дільса—Альдера фулерена з тропоном і його похідними, 2-піроном, 6,6-диметоксициклогекса-2,4-дієноном і його аналогами і іншими дієнами з акцепторними замісниками. Більш того, в реакцію [4+2]-циклоприєднання з фулереном вступають дієни з набагато більш вираженими електроноакцепторними властивостями. Фулерен реагує (хоча і з невеликим виходом) навіть з 2,3-біс(фенілсульфоніл)бута-1,3-дієном, який не утворює аддукти Дільса—Альдера з нормальними дієнофілами. При використанні ж дієнів з двома акцепторами середньої сили виходи реакції циклоприєднання можна порівняти лише з результатами, отриманими для незаміщених і багатьох електрононадлишкових дієнів. Наприклад, нагрівання фулерена з 2,3-біс(метоксикарбоніл)-1,3-циклогексадієном приводить до утворення відповідного аддукта Дільса—Альдера, а термоліз 3,4-диалкоксикарбонілсульфоленів у присутності фулерена С60 веде до утворення циклоаддуктів з виходом 32-47%:

Циклоаддукти, що містять електроноакцепторні групи, легко піддаються подальшій модифікації з утворенням самих різних фулеренових похідних.

Незвичайне циклоприєднання продемонстрували Мурата з співробітниками, в якому у якості дієнового компонента виступали електрон-збиткові металлациклопентадієни:


Платина- і палладациклопентадієни з різними лігандами і складноефірними групами вступають в цю реакцію, даючи фулероциклогексадієни з виходами від помірних до вельми добрих (71% для L = диметилгліоксимат, М=Рd, R=СН3). У разі трифенілфосфінового комплексу напрям реакції залежить від розчинника: в толуолі, що містить 20% ДМСО, [4+2]-циклоприєднання — основна реакція (вихід аддукта рівний 44%), а в толуолі з 20% ацетонітрила основний продукт — комплекс С60Рd(РРh3)2 (вихід 20%).

Металлациклопентадієни можуть генеруватися in situ при дії М(II) на 1,6-діїни. Подальша їх взаємодія з фулереном приводить до фулероциклогексадієнів. Цю реакцію можна описати формально також як [2+2+2]-циклоприєднання:

Схоже [2+2+2]-циклоприєднання етил- і метилпропіолата з фулереном у присутності трициклогексилфосфіна дає фулероциклогексадієни з орієнтацією сложноефірних груп «голова до хвоста»:


Хоча реакція Дільса—Альдера звичайно протікає по злагодженому механізму (шлях АС на мал.), у ряді випадків наголошувалася реалізація постадійних механізмів з утворенням бірадикальних (шлях АВС або АDС) або цвиттер-іонних (AFС, АКС, АМС, АНС) інтермедіатів. Останні можуть утворюватися як напряму, так і по механізму перенесення електрона як перша стадія процесу з подальшою взаємодією катіон-радикального і аніонрадикального фрагмента, ведучим до утворення цвиттер-іона (наприклад, шлях АЕFС).

Трьохмірна діаграма реакції Дільса-Альдера

Механізм перенесення електрона запропонований вище. Враховуючи значний електронодефіцитний характер фулерена, такий механізм здається вірогідним при використанні дієнів з яскраво вираженими електронодонорними властивостями. Дійсно, Мікамі зі співробітниками показали реалізацію механізму перенесення електрона в реакції фулерена з дієнами Данишевського: (1Е)-1-метокси-3-триметилсилоксибутадієном і його (IЕ,3Z)-2,4-диметильним похідним. Ця реакція дає суміш транс- і цис-аддуктів з переважанням транс-ізомеру, що не узгоджується із злагодженим механізмом [4+2]-циклоприєднання.

Утворення «неузгодженого» транс-аддукта не є результатом цис-транс ізомеризації, оскільки збільшення часу реакції веде до повільного зменшення частки транс-аддукта (5% транс- і 1% цис-аддукта через 30 хв, 13% транс- і 3% цис-аддукта через 1 год; 36 і 33% через 6 год). Як і у разі взаємодії фулерена із заміщеними антраценами, реакція швидшає при опромінюванні реакційної суміші (18% транс-аддукта після 30 хв реакції). Це прискорення — результат більш ефективного перенесення електрона від електрон-надлишкового дієна до триплетного стану фулерена в порівнянні з його синглетною формою:

Реакційна здатність диметильного похідного вище, ніж у самого (1Е)-1-метокси-3-триметилсилоксибутадієна (24% після 6 год реакції при кімнатній температурі), але за фотохімічних умов проведення реакції ця відмінність зникає або навіть обертається.