Смекни!
smekni.com

Создание эпоксидных композиций пониженной горючести с электропроводящими и диэлектрическими свойствами (стр. 3 из 4)

В то же время, образцы с аналогичным количеством ГТ и ГТО формируют в 1,5 раза больший объём, чем ненаполненная эпоксидная смола и 3-4 раза больше, чем смола, содержащая ПФА.

Введение в состав ЭД-20 наполнителей и пластификаторов ускоряет процесс отверждения, что проявляется в некотором уменьшении времени гелеобразования, табл.9, и максимальной температуры реакции отверждения для практически всех композиций. Это, видимо, связано с адсорбционным взаимодействием компонентов реакционной смеси с развитой поверхностью наполнителя. При введении наполнителя жидкоолигомерная система сначала переходит в неравновесное состояние, что объясняется частичным разрушением упорядоченных образований, существующих в исходных олигомерах, под действием энергетического взаимодействия их с твердой поверхностью.

На следующем этапе формируются адсорбционные слои с более высокой плотностью, чем в жидкой фазе.

Исключение составляют композиция ЭД-20 + 30ПФА + 5сажа + 30ФОМ + ПЭПА с 25% масс. ПЭПА и композиция ЭД-20 + 25ПФА + 5ГТ + 25ФОМ + 25ПЭПА. При введении ГТ максимальная температура возрастает до 124ºC, но ускоряется процесс отверждения, так как время гелеобразования уменьшается с 60 мин. до 20 мин. (табл.10) и время отверждения уменьшается с 75 мин. до 30 мин. Увеличение содержания отвердителя до 25% ПЭПА, то есть сверх стехиометрического соотношения с эпоксидными группами связано с тем, что как ранее показано некоторые из компонентов реагируют и с отвердителем и между собой. При этом с содержанием ПЭПА увеличиваются, вследствие повышения экзотермичности процесса, скорости процесса отверждения, что приводит к уменьшению жизнеспособности композиций, табл. 9.


Таблица 9.

Параметры отверждения наполненных пластифицированных и непластифицированных композиций.

Состав материала в масс. ч. на 100 масс. ч. ЭД-20 Параметры отверждения СО, % (90°C, 2 часа)
τгел, мин τотв, мин. Тмах, °C
ЭД-20+15ПЭПА 60 75 119
ЭД-20+30ПФА+5сажа+30ФОМ+ПЭПА 30/10 55/25 73/122 86/96
ЭД-20+30ПФА+5ГТО+30ФОМ+ПЭПА 30/25 59/43 62/90 83/95
ЭД-20+30NH4Cl +5ГТО+30ФОМ+ПЭПА 30/25 69/57 52/79 76/94
ЭД-20+30 NH4Cl +5ГТО+30ФД+ПЭПА 30/10 65/27 62/106 74/94
ЭД-20+25ПФА+5ГТ+25ФОМ+25ПЭПА 20 30 124 94

Примечание: в числителе данные для составов с 15% масс. ПЭПА, в знаменателе – с 25% масс. ПЭПА.

Следовательно, с изменением содержания отвердителя можно регулировать время гелеобразования составов в зависимости от запросов производства. При большем содержании ПЭПА увеличивается степень сшитости матрицы, табл.9.

Степень превращения наполненных эпоксидных композиций после суток «холодного» отверждения составляет 74-89%. Поэтому для ее повышения и следовательно, улучшения и стабилизации свойств продуктов отверждения проводили термообработку при 90оС в течение 1-3 часов, что приводит к возрастанию степени отверждения до 90-96 %.

Придание эпоксидной композиции электропроводящих свойств осуществлялось введением наполнителей. Электропроводящие свойства в полимере проявляются при образовании в нем частичками наполнителя цепочечных структур. Образования облегчения таких структур достигалось за счет уменьшения взаимодействия между макромолекулами полимера, между частицами наполнителя, между полимером и наполнителем, а также высокой десперсностью наполнителя. Для этих целей использовали гибридные наполнители, один из которых не является электропроводящим (ПФА, NH4Cl), а также введение пластификаторов. Это позволило даже при небольших количествах электропроводящего наполнителя (5 масс.ч.) добиться значительного снижения удельного сопротивления и отнести разработанные полимерные составы к классу антистатических материалов, табл. 10.

Таблица 10.

Свойства модифицированных эпоксидных композиций, отвержденных

ПЭПА

№ п/п Состав материала в масс. ч. на 100 масс. ч. ЭД-20 Удельное сопротивление
ρυ, Ом·м ρS, Ом
1 ЭД-20+30NH4Cl+5ГТ+30ФД+15ПЭПА 7,6·104 7,6·106
2 ЭД-20+30NH4Cl+5ГТ+30ФОМ+15ПЭПА 3,4·104 8,0·106
3 ЭД-20+30ПФА+5ГТ+30ФОМ+15ПЭПА 8,9·105 1,8·108
4 ЭД-20+30ПФА+5сажа+30ФОМ+15ПЭПА 2,4·108 4,5·109
5 ЭД-20+30NH4Cl+5ГТ+20ФД+15ПЭПА 1·104 2,4·106
6 ЭД-20+30NH4Cl+5ГТ+30ТХЭФ+15ПЭПА 3,9·103 3,3·105
7 ЭД-20+30ПФА+35ФОМ+15ПЭПА 1,8·108 3,8·1010
8 ЭД-20+25ПФА+5ГТ+25ФОМ+25ПЭПА 1,6·109 3,0·1011

Кроме того, из анализа показателей удельного сопротивления, очевидно, что имеет значение как и природа второго (NH4Cl или ПФА) так и природа графитового наполнителя. Графит тигельный – это бисульфат углерода, представляющий собой электролитическое соединение внедрения графит. Технический углерод (сажа) представляет собой турбостатическую (неупорядоченно-слоевую) форму углерода. Электропроводимость материалов содержащих сажу на 2-3 порядка меньше, чем содержащих в таком же количестве графит тигельный.

Процессы деструкции исходных компонентов, а также пластифицирован­ных и наполненных составов исследованы с помощью термогравиметрического анализа (ТГА), табл.11. Влияние применяемых модификаторов проявляется в сле­дующем: увеличивается выход коксового остатка (КО), следовательно, уменьшается количество летучих продуктов, и максимальные скорости разложения смещаются в область низких температур (рис. 5), что свидетельствует о возможности влияния на физико-химические процессы пиролиза полимера на начальной стадии его деструкции.

Горючесть эпоксидных смол оценивалась методоми «керамической» и «огневой» трубы, и по показателю воспламеняемости - кислородному индексу.

Образцы, содержащие замедлители горения и модификаторы не горят на воздухе. В пламени спиртовки начинают вспениваться и образуют кокс. Наблюдается снижение потерь массы с 78% для композиции, не содержащей на­полнителей и модификаторов до 1 -6% для наполненных композиций. Небольшие потери массы связаны с некоторой деструкцией полимера, табл. 12.

Рис.5. Зависимость скорости потери массы от температуры.

1 - ЭД-20+15ПЭПА,

2 - ЭД-20+30NH4Cl+5ГТО+30ФОМ+15ПЭПА,

3 - ЭД-20+30NH4Cl+5ГТО+30ФД+15ПЭПА,

4 - ЭД-20+30ПФА+5ГТО+30ФОМ+15ПЭПА,

5 - ЭД-20+30ПФА +5сажа+30ФОМ+15ПЭПА,

6- ЭД-20+25ПФА+5ГТ+25ФОМ+25ПЭПА.


Таблица 11

Данные ТГА эпоксидных композиций

Состав, масс. ч., на 100 масс.ч. ЭД-20

Основные стадии пиролиза

Выход коксового остатка, %, при Т, 0С
, 0С
, %
200 300 400 500

ЭД-20+15ПЭПА

93 79 51 37
ЭД-20+30NН4Сl+ 5ГТО+30ФОМ+15ПЭПА
95 50 30 21
ЭД-20+30NН4Сl+ 5ГТО+30ФД+15ПЭПА
89 55 26 21
ЭД-20+30ПФА+ 5ГТО+30ФОМ+15ПЭПА ТН=2000С ТК=4000С - 97,5 79 69 64
ЭД-20+30ПФА+5 сажа+30ФОМ+15ПЭПА ТН=2000С ТК=4000С - 97 78,5 71 66
ЭД-20+25ПФА +5ГТ+25ФОМ+25ПЭПА
94 63 47 39
ЭД-20+25ПФА+5ГТ +25ФОМ+25ПЭПА КОКС
94 89 85 78

Таблица 12.