Смекни!
smekni.com

Биохимия молока (стр. 3 из 7)

В молоке идентифицированы представители четырёх классов иммуноглобулинов – IgG, IgA, IgM, IgE.

Иммуноглобулины образуются в ответ на введение в организм антигена. Иммуноглобулины содержатся в сыворотки крови, слюне, выделениях слюнных желёз и т.д. Действие Ig осуществляется через образование комплекса с антигеном. Если при этом проявляется образование осадка, то это называется реакцией преципитации; если взаимодействие приводит к склеиванию клеток, то их называют агглютининами, если происходит лизис – лизинами.

Церулоплазмин и лактоферрин. Они являются соответственно медь- и железосодержащими белками молока. Оба белка предназначены для накопления и переноса ионов меди и железа, адсорбируя их на поверхности белковой глобулы. Как специализированные переносчики они способны обеспечить поступление ионов меди и железа в организм детёнышей, ликвидируя, таким образом, недостаток этих ионов в растущем организме. Однако между собой церулоплазмин и лактоферрин различаются по молекулярной массе – 151 и 76,5 кДа соответственно.

Очищенный церулоплазмин имеет голубую окраску за счёт высокого содержания меди (8 атомов меди на молекулу белка). Катализирует реакции оксидазного окисления аскорбиновой кислоты, гидрохинона, катехолов и p-фенилендиамина. Оптимум активности церулоплазмина приходится на pH 5,6…6,0. Ингибиторами фермента являются цеанид и азид, а активаторами – Fe2+ . Содержание церулоплазмина в молоке составляет менее 1 мг/кг.

Так как лактоферрин содержит в своём составе углеводы, то он является гликопротеином. Синтез лактоферрина происходит в клетках молочной железы. В молоке крупного рогатого скота содержится 20…350 мг/кг лактоферрина. При этом его концентрация может возрастать в молозиве и стародойном молоке в десятки и более раз.

Биологическая ценность казеина

Биологическая ценность белка пищи определяется двумя главными признаками: сбалансированностью незаменимых аминокислот, лёгкой гидролизуемостью пищеварительными протеиназами.

В настоящее время изучен аминокислотный состав пратически всех пищевых белков. Следовательно, может быть рассчитано соотношение незаменимых аминокислот и скор, т.е. отклонение в содержании аминокислот по сравнению с эталонными белками, имеющими наивысшую биологическую ценность. Известно, что белки животного происхождения обладают лучшим соотношением незаменимых аминокислот и скором, чем растительные. К белкам с наибольшей биологической ценностью относятся белки яйца, мышц животных и рыбы, а также молока, в том числе и казеин. Гидролизуемость пищеварительными ферментами до настоящего времени ещё недостаточно изучена и не полностью осмыслена.

Для определения биологической ценности белка важное значение имеют вид, возраст животного и человека, потребляющих данный белок. А.Э. Шарпенак отмечал, что биологическая ценность пищевого белка будет тем выше, чем ближе аминокислотный состав этого белка к аминокислотному составу тотального белка тела реципиента.

Необходимо отметить, что численная величина биологической ценности белка находится в тесной связи с его количеством в диете. При увелечении содержания белка в диете наблюдается снижение его биологической ценности и наоборот. В 1946 г. группа американских авторов выдвинула представление об «абсолютной» биологической ценности, под которой понималась биологическая ценность при уровне белка, покрывающем эндогенную потребность организма.

Биологическая ценность белка определяется сбалансированностью аминокислот. Незаменимые аминокислоты в организме используются: 1) для синтеза тканевых белков; 2) в качестве источника энергии, метаболизируя до конечных продуктов обмена; 3) для синтеза биологически активных веществ небелковой природы. При снижении количества белка в диете организм экономит незаменимые аминокислоты за счёт второго пути использования аминокислот, что приводит к увеличению абсолютной величины биологической ценности, являющейся в конечном итоге мерой рационального использования аминокислот, т.е. их утилизации по первому и третьему пути.

Потребность в незаменимых аминокислотах зависит так же от физиологического состояния организма. В конечном итоге, оптимальная потребность организма в незаменимых аминокислотах является интегральной величиной, зависящей от: 1) аминокислотного состава тканевых белков; 2) относительной массы этих белков в организме; 3) скорости их обмена; 4) уровня использования незаменимых аминокислот по второму и третьему метаболическим путям; 5) выделения незаменимых аминокислот в неизменённом или малоизменённом виде с экскретами. Все эти обстоятельства определяют потенциальный пул незаменимых аминокислот.

Полученные данные о наличии максимальной гидролизуемости в нативном состоянии делают казеин вне конкуренции с обычными глобулярными белками. Здесь важно подчеркнуть биологический аспект такого вывода, так как человек давно использует различные виды кулинарной обработки, вызывющие денатурацию глобулярных белков и соответственно увеличение их перевариемости.

Скорость гидролиза казеина пепсином зависит от степени дисперстности сгустков этого белка, именно она убывает с её уменьшением. Это обстоятельство должно иметь большое значение для обычных продажных препаратов казеина, в которых белок может подвергаться различным нежелательным изменениям, что должно приводить к снижению перевариваемости, а следовательно, и биологической ценности таких препаратов.

Таким образом, мы определили, что основным белком молока является казеин.

[3]

Сравнимая усвояемость казеина и сывороточного белка

Два главных белка в молоке - сыворотка и казеин. Целый ряд исследований выявил особенности их усвоения и влияния на метаболизм человеческого организма. Сывороточный протеин всасывается быстро и достигает пикового уровня в крови через 90 минут после приема. Казеин - медленный белок. Свертываясь в желудке, он постепенно высвобождает аминокислоты в кровь. Наблюдения показали, что приток аминокислот из казеина не прекращается на протяжении семи часов. Аминокислоты в крови подавляют распад мышечного белка. Быстрая абсорбция сывороточного белка приводит к большему окислению аминокислот в печени и повышению белкового синтеза (по причине увеличения количества аминокислот). Но сывороточный белок обладает меньшим антикатаболическим действием, чем казеиновый.

В недавно проведенном научной исследовании молочных белков приняли участие люди, ведущие активный образ жизни, и выяснилось, что употребление незаменимых аминокислот до и после тренировок заметно способствует синтезу белка, и соответственно, росту размеров и силы.

Если казеин и сыворотка усваиваются с разной скоростью, какой из них лучше стимулирует мышечный рост после тренировок с тяжестями? На этот вопрос и попытались ответить ученые. Участники эксперимента получали один из трех напитков через час после окончания тренировки ног. Напитки были следующими:

1) 20 г казенна

2) 20 г сывороточного протеина

3) плацебо

Для отслеживания метаболизма белка ученые замеряли уровень в крови двух незаменимых аминокислот - лейцина и фенилаланина. Как и ожидалось, оба белка обеспечили положительное белковое равновесие, но уровень лейцина достигал своего пика раньше. В начале эксперимента казеин и сыворотка показали сходное усвоение фенилаланина, но казеин дал более стойкий во времени результат, что подтвердило его «медленное» действие.

Между тем, к концу эксперимента оба белка привели к одинаковому уровню фенилаланина. Такой результат навел ученых на мысль, что с анаболической точки зрения нет особых различий между приемом сывороточного белка и казеина. Также было отмечено, что только фенилаланин использовался мышцами для синтеза белка. Лейцин, как аминокислота с разветвленной цепочкой, может накапливаться мышечными волокнами для получения энергии. Таким образом, уровень фенилаланина служит более точным показателем анаболического отклика мышц. Быстрое всасывание сывороточного белка также обеспечивает скорейшую оксидацию лейцина. Инициаторы эксперимента сообщили о незначительном окислении лейцина из казеина и 57%-ном его окислении из сывороточного протеина.

Из двух рассмотренных аминокислот только фенилаланин полностью использовался для синтеза мышечного белка. Поскольку результаты действия этой аминокислоты были сходными в случаях приема обоих белков, ученые заключили, что [4]сыворотка и казеин одинаково эффективно усиливают синтез мышечного белка после тренировок.

Ферменты молока

В молоке присутствуют ферменты: пероксидаза, каталаза, липаза, щелочная фосфатаза, ксантиноксидаза и др.

Пероксидаза – самый распространённый фермент растительных и животных тканей. Пероксидаза относится к группе двухкомпонентных ферментов (железогликопротеин), в составе которых гемин (протопорфирин IX в комплексе с трёхвалентным железом) и полипептидная цепь. Участки полипептидной цепи, входящие в эпитопы, представлены в виде затемнённых сплошных лент.

Пероксидаза катализирует реакции оксигеназного, оксидазного и пероксидазного окисления субстратов.

Каталаза является гемсодержащим ферментом, состоит из четырёх субъединиц, каждая из которых содержит по атому железа. Фермент катализирует реакции разложения (диспропорционирования) перекиси водорода на воду и кислород.

В молоке содержится незначительное количество каталазы. Возрастание активности фермента отмечается у новотельных и стародойных коров. Особенно высокая активность фермента проявляется при заболеваниях вымени у коров (маститах).