Смекни!
smekni.com

Методы проведения полимеризации (стр. 3 из 3)


6 Газофазная полимеризация

Способ проведения полимеризации, при котором мономер находится в газовой фазе, а продукт реакции образует твердую дисперсную или жидкую фазу.

Скорость газофазной полимеризации зависит от скорости диффузии мономера из газовой фазы в зону реакции и к активным центрам роста цепи в конденсированной фазе; от растворимости и сорбции мономера полимерной фазой; от удельной поверхности частиц катализатора, нанесенных на твердый сорбент при гетерогенной полимеризации. В зависимости от способа инициирования рост цепей может происходить в газовой фазе с последующей агрегацией образовавшихся макромолекул или в частицах полимера.

Для множества систем найдено отрицательное значение эффективной энергии активации полимеризации, что обусловлено уменьшением концентрации мономера, адсорбированного полимерными частицами или растворенного в них, с повышением температуры. Отсутствие приводит к снижению роли передачи цепи и росту средней молекулярной массы полимера. Теплообмен в газофазной полимеризации определяется теплопередачей от твердых частиц полимера к газу и зависит от отношения поверхности частиц к их объему.

Ранее из-за сложности регулирования теплоотвода распространение в мировой практике получила только газофазная полимеризация этилена при высоком давлении (100-300 МПа), протекающая по свободнорадикальному механизму (инициаторы –О–О–).

В этом процессе плотность газообразного мономера в критической точке приближается к плотности жидкой фазы (0,5 г/см3), и реакционная масса представляет собой раствор полимера в мономере. Впоследствии быстрое развитие получила газофазная полимеризация в псевдосжиженном слое на высокоэффективном металлоорганическом катализаторе, нанесенном на твердый тонкодисперсный носитель (например, силикагель). В реактор непрерывно или периодически вводят катализатор и газообразный мономер под давлением 1-3 МПа, создающий псевдосжиженный слой частиц катализатора.

В результате полимеризации мономера частицы катализатора укрупняются, оседают и периодически удаляются из реактора. Мономер циркулирует в системе реактор-выносной холодильник-компрессор, обеспечивая тем самым отвод тепла реакции. Степень превращения. мономера за один проход 1-3 %, поэтому объем реактора велик и при производительности 70-100 тыс. т/год составляет до 600 м3. В некоторых реакторах применяют дополнительные перемешивающие устройства.

Преимущества способа: отсутствие растворителей и разбавителей, что упрощает конечную обработку продуктов полимеризации; крупные частицы

полимера размером около 0,3-0,5 мм можно непосредственно использовать для переработки в изделия, минуя грануляцию; исключаются промывка, фильтрация, сушка продукта, регенерация растворителя, в результате чего резко снижаются затраты энергии. По этому способу производят полиэтилен высокой плотности, сополимер этилена с высшими олефинами, который по свойствам близок полиэтилену низкой плотности, полипропилен.

Газофазную привитую сополимеризацию используют для поверхностной модификации волокон и пленок, поверхности которых для создания активных центров полимеризации предварительно облучают УФ-светом или излучением высокой энергии, окисляют.



Заключение

Полимеризация была открыта ещё в середине XIX века, практически одновременно с выделением первых способных к полимеризации мономеров (стирола, изопрена, винилхлорида, метакриловой кислоты и др.). Однако суть полимеризации как цепного процесса образования истинных химических связей между молекулами мономера была понята лишь в 20—30-е гг. XX века благодаря работам Г. Штаудингера, С. В. Лебедева, Б. В. Бызова, К. Циглера. В 1922 г. химик Штаудингер доказал, что полимеры представляют собой соединения, состоящие из больших молекул, атомы которых связаны между собой ковалентными связями.



Библиографический список

1 Баркалов, И. М. Цепные химические реакции при расстекловывании матриц [Текст] / И. М. Баркалов // Успехи химии. – 1980. – Т. – 49. Вып. 2. – С. 362-383.

2 Высокоскоростные автоволновые режимы превращения в низкотемпературной химии твердого тела [Текст] / В. В. Барелко [и др.] // Успехи химии. – 1990. – Т. 59. – Вып. 3. – С. 353-374.

3 Goldanskii, V. I. Quantum Low-Temperature Limit of a Chemical Reaction Rate [Text] / V. I. Goldanskii, M. D. Frank-Kamenetskii, I. М. Barkalow // Science. –1973. – Vol. 182. – № 4119. – Р. 1344-1345.

4 Хувинк, Р. Химия и технология полимеров: в 2 т./ Р. Хувинк; сост. А. Ставерман. – M. - Л., 1966.

5 Шварц, M. Анионная полимеризация [Текст] / М. Шварц. – M. – Берлин : 1971.

6 Вольфсон, С. А. Кинетика полимеризационных процессов [Текст] / С. А. Вольфсон, H. С. Ениколопян. – M.: 1978.

7 Бреслер, С. E. Физика и химия макромолекул [Текст] / С. E. Бреслер, Б. Л. Ерусалимский. – M. - Л.: 1965.

8 Энциклопедия полимеров : в 3 т. / под ред. А. А. Берлина. – M.: 1972-1977.

9 Вольфсон, С. А. Кинетический метод в синтезе полимеров [Текст] / С. А. Вольфсон. – M.: 1973.

10 Полимеризация [Текст] // Большая Советская Энциклопедия. – М.: 1969 – 1978.