Смекни!
smekni.com

Расчет насадочного абсорбера для улавливания ацетона из воздуха водой при температуре 200С (стр. 2 из 3)

Разновидностью аппаратов с ситчатыми тарелками являются разработанные Позиным пенные аппараты. Основное отличие пенного аппарата состоит в устройстве перелива. В то время как в обычных абсорберах с ситчатыми тарелками происходит свободный слив жидкости через перелив тарелки, в пенных аппаратах осуществляется слив с подпором пены через прямоугольное отверстие в стенке аппарата. Сам перелив наружный и выполнен в виде коробки, в которой разрушается пена. Применением слива с подпором пены искусственно увеличивают ее высоту на тарелке. При небольших нагрузках по жидкости высота пены уменьшается и происходит свободный слив, как в обычных ситчатых тарелках.

Иногда, чтобы предотвратить забивание тарелки осадками (при за* грязненных жидкостях) и снизить гидравлическое сопротивление, применяют ситчатые тарелки, установленные под небольшим наклоном (3—5°) к горизонтальной плоскости. На наклонных тарелках сливной порог отсутствует и жидкость поступает в переливное устройство непосредственно с плоскости тарелки. Испытания показали, что по эффективности массопередачи наклонные ситчатые тарелки значительно уступают горизонтальным вследствие уменьшения слоя жидкости на тарелке. Поэтому наклонные тарелки не получили распространения.

Клапанные тарелки.

Эти тарелки являются видоизменением ситчатых, приспособленным для работы при сильно меняющихся газовых нагрузках. Это достигается тем, что отверстия в тарелке перекрыты клапанами, степень открытия которых зависит от нагрузки по газу. При низких нагрузках подъем клапана мал и площадь живого сечения для прохода газа тоже мала. С повышением нагрузки увеличиваются подъем клапана и площадь живого сечения. Таким образом, скорость газа в живом сечении отверстий остается приблизительно постоянной при изменении нагрузки в широких пределах, что и обеспечивает работу тарелки в этом диапазоне нагрузок без провала жидкости.


2 Расчёт насадочного абсорбера для улавливания ацетона из воздуха

Геометрические размеры колонного массообменного аппарата определяются в основном поверхностью массопередачи, необходимой для проведения данного процесса, и скоростями фаз.

Поверхность массопередачи может быть найдена из основного уравнения массопередачи:

F=

=
(1)

где Кх, Ку — коэффициенты массопередачи соответственно по жидкой и газовой фазам, кг/(м2-с).

2.1 Определение массы поглощаемого вещества и расхода поглотителя

Массу переходящих из воздуха в поглотитель аммиака М находят из уравнения материального баланса:

М = G(Ун-Ук) = L(Хк-Xн) (2)

где L, G — расходы соответственно чистого поглотителя и газа, кг/с;

Хн, Хк начальная и конечная концентрации аммика в воде, кгА/кгВ;

Ун, Ук — начальная и конечная концентрации бензольных углеводородов в газе, кг А/кгГ.

Пересчитаем концентрации и нагрузки по фазам для получения выбранной для расчета размерности:


У =(М(Ац)*У)/Мг(3)

н = 58*0,06/29 = 0,12 кг Ац/кг Г

к = 58*0,0015/29 = 0,003 кг Ац/кг Г

Конечная концентрация аммиака в воде Хк обусловливает его расход, который, в свою очередь, влияет на размеры абсорбера и часть энергетических затрат, связанных с перекачиванием жидкости и ее регенерацией. Поэтому Хк выбирают, исходя из оптимального расхода поглотителя. Примем расход поглотителя Lв 1,5 раза большеминимального Lmin. Минимальный расход поглотителя найдем по графику зависимости между содержанием ацетона в воздухе и воде при температуре 25°С. Для этого строятся рабочая и равновесная линии процесса.

Равновесную линию строим по следующим данным:

У* = 1,68·Х

Х, кгАц/кгВ У*, кгАц/кгГ
0 0
0,05 0,084

Зная Ук, проводим воображаемую линию до пересечения с равновесной линией. Точка пересечения и будет характеризовать минимальный расход поглотителя.

Получили концентрацию ацетона в воде, равновесную с концентрацией его в газе

Ун = 0,087 кгАц/кгВ.

В этом случае конечную концентрацию Хк определяют из уравнения материального баланса:

М = Lmin(

*Ун –
н) = 1,5Lmin(
к -
н) (4)

Отсюда

к = (
*Ун +0,5
н)/1,5 = (0,087 – 0,5*0)/1,5 = 0,058

Lmin находим по графику (рис. 3) как тангенс угла наклона равновесной линии к оси Ох:

Lmin = (Ун-Ук) /(

*Ун –
н) (5)

Lmin =(0,12 – 0,03)/0,087 = 1,034

Удельный расход поглотителя равен:

lуд = 1,5Lmin = 1,5·1,034 = 1,55 кг/кг

Пересчитаем расход газа в выбранных единицах (кг/с):

G = ρоу·V = 1,293·2 = 2,57(кг/с),

ρоу –плотность воздуха при нормальных условиях.

Т.к. lуд = L/G, то из этого выражения находят расход поглотителя:

L = 1,55·2,57 = 4,00 (кг/с)

2.2 Расчёт движущей силы.

Движущая сила в единицах концентрации газовой фазы определяется по формуле:

Δ

ср =

где Δ

и Δ
- большая и меньшая движущие силы на входе потоков в абсорбер и на выходе из него, кгАц/кгГ (см. рис. 3).

В данном случае Δ

=
-
*Хк и Δ
=
-
*Хн , где
*Хн и
*Хк – концентрации ацетона в воздухе, равновесные с концентрациями в жидкой фазе (поглотителе) соответственно на вхрде в абсорбер и на выходе из него (см. рис. 3).

Δ

= 0,12 – 0,08 = 0,04 кгАц/Г

Δ

=0,003 – 0 = 0,003 кгАц/кгГ

Δ

ср =
= 0,01429 кгАц/кгГ.

2.3 Расчёт скорости газа и диаметра абсорбера

Предельную скорость газа в насадочных абсорберах можно рассчитать по уравнению:

lg

=А - В
(7)

где ωпр – предельная фиктивная скорость газа, м/с;

µх,µв – вязкость соответственно поглотителя и воды.

А = -0,073, В = 1,75.

Пересчитаем плотность газа на условия в абсорбере:

ρу = ρоу· = 1,293·

= 1,205(кг/м3)

Решая уравнение(7), получаем ωпр = 4,16 м/с. Примем ω = 0,2 ωпр;

ωпр = 0,832 м/с. Диаметр абсорбера находят из уравнения расхода:

d =

=
(8)

d =

= 1,67 м.

Выбираем стандартный диаметр обечайки абсорбера d≈1,8 м. При этом действительная рабочая скорость газа в колонке будет равна:

ω = 0,832·

= 0,72 (м/с)

2.4 Определение плотности орошения и активной поверхности насадки

Плотность орошения (скорость жидкости) рассчитывают по формуле:

U = L/ρx·S(9)