Смекни!
smekni.com

Расчет насадочного абсорбера для улавливания ацетона из воздуха водой при температуре 200С (стр. 3 из 3)

где S – площадь поперечного сечения абсорбера, м2 .

Подставив, получают:

U = 4/(998·0,735·3,82) = 0,00158(м3/м2·с) = 15,8·10-4(м3/м2·с)

Доля активной поверхности насадки ψа может быть найдена по формуле:

ψа =

(10)

где р и q –коэффициенты, зависящие от типа насадки; р = 0,0078, q = 0,0146

ψа = 0,57

2.5 Расчёт коэффициентов массоотдачи

Для регулярных насадок, к которым относятся кольца Рашига, коэффициент массоотдачи в газовой фазе βу находят из уравнения:

Nu′у = 0,167

(11)

где Nu′у = βу

/Dy- диффузионный критерий Нуссельта для газовой фазы.

Отсюда βу = 0,167

(12)

где Dy – коэффициент диффузии ацетона в газовой фазе, м/с2;

Rey = ω

ρy/εµу – критерий Рейнольдса для газовой фазы в насадке;

= µу/ ρyDy – диффузионный критерий Прандтля для газовой фазы;

µу – вязкость газа,Па·с;

l – высота элемента насадки, м.

Рассчитаем коэффициент молекулярной диффузии ацетона в воздухе Dy.

При отсутствии экспериментальных данных коэффициент молекулярной диффузии газа а в газе В (или газа В в газе А) может быть вычислен по формуле:

Dy =

(13)

Где Dy – коэффициент диффузии ацетона в газовой фазе, м/с2;Т – температура, К; р –давление, кгс/см2; МА и МВ – молярные массы газов А и В;vA,vB – мольные объёмы газов А и В, для ацетона vA = 74 см3/моль, для воздуха vB = 29,9 см3/моль.

Dy =

= 5,62·10-4(м2/с)

Rey = 0,72·0,027·1,205/0,735·17,3·10-6 = 1842

17,3·10-6/5,62·10-4·1,205= 0,03

По формуле (12) вычисляем коэффициент массоотдачи в газовой фазе βу = 0,167

=0,212 (м/с)

Коэффициент массоотдачи в жидкой фазе βх находим из обобщённого уравнения, пригодного в том числе, и для регулярных насадок:

Nu′х = 0,0021

(13)

где Nu′х = βх·δпр/Dх – диффузионный критерий Нуссельта для жидкой фазы.

Отсюда βх = 0,0021(Dх/δпр)

(14)

где Dх – коэффициент диффузии ацетона в воде, м2/с;

δпр= (µх2/ ρх2g)1/3 - приведённая толщина стекающей плёнки жидкости, м;

Reх = 4Uρх/аµх – модифицированный критерий Рейнольдса для стекающей по насадке плёнке жидкости;

=µх/ρхDх – диффузионный критерий Прандтля для жидкости.

В разбавленных растворах Dх может быть вычислен достаточно точно по уравнению:

Dх = 7,4·10-12

(15)

где М – молярная масса воды, кг/кмоль; Т – температура воды, К; µх- вязкость воды, мПа·с;

мольный объём ацетона, см3/моль;

β – параметр, учитывающий ассоциацию молекул.

Подставив, получим:

Dх = 7,4·10-12

= 1,12·10-9(м2/с)

δпр= (1·10-3)2/(998)29,8)1/3 = 4,7·10-5 (м)

Reх = 4·0,00158·998/110·10-3 = 5,73

=1·10-3/998·1,12·10-9 = 890

Вычисляем коэффициент массоотдачи в жидкой фазе по формуле (14):

βх =(0,0021· 1,12·10-9)/ (4,7·10-5)·5,730,75·8900,5 = 5,52·10-6(м/с)

2.6 Расчёт коэффициента массопередачи

Коэффициент массопередачи Ку находим из уравнения аддитивности фазовых диффузионных сопротивлений:

Ку=

(16)

где m – коэффициент распределения,находится из уравнения равновесной линии (см. рис. 3); кг М/кг Г.

Выразим βх и βу в выбранной для расчёта размерности:

βу = 0,212ρу = 0,212·1,205 =0,255(кг/м2·с)

βх =5,52·10-6 ρх =5,52·10-6·998 = 5,5·10-3 (кг/м2·с)

Таким образом, Ку =

=0,0032 (кг/м2·с)

2.7 Определение поверхности массопередачи высоты абсорбера

Поверхность массопередачи может быть найдена из основного уравнения массопередачи:

F =

=
(17)


где Кх и Ку – коэффициенты массопередачи соответственно по жидкой и газовой фазам; кг/(м2·с), М – производительность абсорбера по поглощаемому компоненту, которая находится из уравнения (2):

М = G(Ун-Ук); М = 2,55·(0,12 – 0,003) = 0,301(кг/с)

F= 0,301/0,0032·0,01429= 6582(м2).

Высоту насадки, требуемую для создания этой поверхности, рассчитаем по формуле:

Н=

(18)

Подставив, получим: Н = 6582/0,785·110·1,820,57 =41 (м)

Принимая высоту яруса насадки 3 м, а расстояние между ярусами 0,3 м, определим высоту насадочной части абсорбера:

Нн = Н+ 0,3(Н/3 – 1) = 41+0,3(41/3- 1) = 44,8 (м)

Расстояние между днищем абсорбера и насадкой определяется необходимостью равномерного распределения газа по поперечному сечению колонны. Примем это расстояние равным 1 – 1,5d.

Расстояние от верха насадки до крышки абсорбера зависит от размеров распределительного устройства для орошения насадки и от высоты сепарационного пространства, в котором часто устанавливают каплеотбойные устройства для предотвращения брызгоуноса из колонны. Примем это расстояние равным 2,4 м. Тогда общая высота одного абсорбера:

На = Нн+1,05 d+2,4= 44,8+1,05*1,8+2,4 = 49,1 м.

2.8 Расчёт гидравлического сопротивления абсорбера

Гидравлическое сопротивление ΔР находят по формуле:

ΔР = ΔРс·10bU(19)

где ΔРс – гидравлическое сопротивление сухой (неорошаемой жидкостью) насадки, Па;U- плотность орошения, м3/(м2·с); b- коэффициент(b = 169).

Гидравлическое сопротивление сухой насадки определяют ΔРс по уравнению:

ΔРс = λ·

ρу (20)

Где λ - коэффициент сопротивления регулярных насадок;

в свободном сечении насадки;
/ε; м/с.

Коэффициент сопротивления регулярных насадок находят по уравнению:

λ = λтр+ξ(dэ/l) (21)

где λтр – коэффициент опротивления трению (λтр = 0,053);ξ – коэффициент местного сопротивления:

ξ = 4,2/ε2 – 8,1/ε+3,9 (22)

ξ = 4,2/(0,735)2 – 8,1/0,735+3,9 = 7,78 – 11,02+3,9 = 0,66

λ = 0,053+0,66(0,027/0,05) = 0,41

ΔРс = 0,41·(41/0,027)·(0,72/0,735)2·1,205 = 720(Па)

Гидравлическое сопротивление орошаемой насадки ΔР равно:

ΔР = 720·10169·0,00158 = 1327 (Па)


3 Технические параметры

Технические параметры насадочного абсорбера для улавливания ацетона из воздуха представлены в таблице:

Параметр Единицы измерения Значение
Газ - Воздух
Целевой компонент - Ацетон
Поглотитель - Вода
Концентрация целевого компонента:в газовой фазе:-начальная:-конечная:в жидкой фазе:-начальная:-конечная: КгАц/КгГКгАц/КгВ 0,120,00300,058
Расход газа Кг/с 2,59
Расход поглотителя Кг/с 4,00
Средняя движущая сила КгАц/КгГ 0,01429
Диаметр абсорбера м 1,8
Рабочая скорость газа м/с 0,72
Плотность орошения м3/(м2·с) 0,00158
Доля активной поверхности насадки - 0,57
Коэффициенты массоотдачи:в газовой фазе:в жидкой фазе: Кг/(м2·с) 0,2550,0055
Коэффициент массопередачи Кг/(м2·с) 0,0032
Поверхность массопередачи М2 6582
Высота насадки абсорбера м 41
Высота насадочной части абсорбера м 44,8
Высота одного абсорбера м 49,1
Гидравлическое сопротивление орошаемой насадки Па 1327

Заключение

В данной курсовой работе представлен расчёт насадочного абсорбера с насадками в виде регулярных колец Рашига (50х50х5) для улавливания ацетона из воздуха водой при температуре 200С.


Список использованных источников

1. Основные процессы и аппараты химической технологии: Пособие по проектированию /Под ред. Ю.И. Дытнерского. – М.: Химия. 1996 – 496 с.

2. Основные процессы и аппараты химической технологии / А.Г. Касаткин. – М.: Химия, 1971 – 788 с.

3. Абсорбция газов / В.М. Рамм. – М.: Химия, 1976 – 655 с.