Агликоны флавоноидов, как правило, растворимы в ацетоне, спиртах, органических растворителях и нерастворимы в воде. Гликозиды плохо растворимы в воде, за исключением гликозидов, имеющих в своей молекуле более трёх остатков сахара, не растворимы в органических растворителях (эфире и хлороформе).
Флавоноидные гликозиды обладают оптической активностью, для них характерна способность к кислотному и ферментативному гидролизу. Скорость гидролиза и условия его проведения различны для различных групп флавоноидов [6].
О-гликозиды при действии разбавленных минеральных кислот и ферментов легко гидролизуются до агликона и углеводного остатка. С-гликозиды с трудом расщепляются под действием концентрированных кислот (HCl или СН3СООН) или их смесей при длительном нагревании [2].
Под влиянием света и щелочей легко окисляются, изомеризуются, разрушаются. При нагревании до температуры 200°С эти соединения возгоняются, а при более высокой температуре разрушаются [3].
IV. Распространение в растительном мире.
Флавоноиды широко распространены в растительном мире. Более того, многие семейства характеризуются исключительным многообразием типов флавоноидных соединений, синтезируемых в их представителях [5].
Около 40% флавоноидов приходится на группу производных флавонола, несколько меньше – флавона, значительно реже встречаются флаваноны, халконы, ауроны [6].
Особенно богаты флавоноидами высшие растения семейств:
· Розоцветные (Rosacea) (различные виды боярышников, черноплодная рябина);
· Бобовые (Fabaceae) (софора японская, стальник полевой, солодка);
· Гречишные (Polygonaceae) (различные виды горцев - перечный, почечуйный, птичий; гречиха);
· Астровые (Asteraceae) (бессмертник песчаный, сушеница топяная, пижма);
· Яснотковые (Lamiaceae) (пустырник сердечный);
· Сельдерейные (Apiaceae) (володушка многожильчатая);
· Рутовые (Rutaceae) (бархат, рута душистая)
Более часто флавоноиды встречаются в тропических и альпийских растениях. Обнаружены и у низших растений: зеленые водоросли (ряски), споровые (мхи, папоротники), хвощи (хвощ полевой), а также у некоторых насекомых (мраморно-белая бабочка) [7].
В растениях флавоноиды локализуются в различных органах, но чаще в надземных: цветках, обуславливая окраску лепестков(бессмертник песчаный, василек синий, пижма обыкновенная); в траве(фиалка, чистец, рута, горец), плодах(боярышник, софора японская); значительно меньше их в стеблях и подземных органах (солодка, шлемник байкальский, стальник полевой). Наиболее богаты ими молодые цветки, незрелые плоды. Локализуются в клеточном соке в растворенном виде. Содержание флавоноидов в растениях различно: в среднем 0,5-5%, иногда достигает 30% (в цветках софоры японской) [энт].
В клетках растений флавоноиды накапливаются в форме гликозидов, главным образом в вакуолях, а в свободном состоянии - в специальных образованиях, зачастую имеющих довольно сложное строение - смоляных и эфирномасличных ходах, канальцах, вместилищах, железках и т.д. В надземных частях растений более 85% суммы флавоноидов локализуется в клетках эпидермы и только 15% - в остальных тканях [2].
В лепестках цветков обычно находятся антоцианы, обуславливая окраску большинства алых, красных, розово-лиловых и синих цветков. В окраске желтых цветов принимают участие флавоноловые гликозиды, ауроны, и халконы, хотя наиболее важным источником этого цвета являются каротиноиды. Поскольку антоцианиды и флавонолы особенно близко связаны структурно и биогенетически, то они часто присутствуют вместе в одинаковых гликозидных структурах. С антоцианами совместно могут находиться также гликозиды флавонов, флавононов, ауронов и халконов. Очевидно, в зависимости от сочетаний этих соединений лепестки цветков приобретают разные оттенки. Гликолизирование флавоноидных пигментов цветков имеет существенное значение. С одной стороны, это состояние обеспечивает их устойчивость к свету и к действию ферментов, с другой – в форме гликозидов улучшается растворимость пигментов в клеточном соке.
В большинстве плодов основной их окраски являются также антоцианы. Широко распространены и флавоноловые гликозиды. В листьях главными являются флавоноловые гликозиды, а антоцианов в них сравнительно мало. В семенах флавоноиды могут находиться как в свободном, так и в связанном состоянии. Например, это может относиться к флавонолу кверцетину. Функция флавоноидов в семенах неясна. Высказано предположение, что они могут быть ингибиторами прорастания [5].
Биологическая роль флавоноидов в жизни растений изучена еще недостаточно.
Некоторые авторы считают, что флавоноиды принимают участие:
• в окислительно-восстановительных процессах растений;
• в выработке иммунитета;
• в защите растений от неблагоприятных воздействий ультрафиолетовых лучей и низких температур. Предполагается, что благодаря способности поглощать ультрафиолетовое излучение (330–350 нм) и часть видимых лучей (520–560 нм)флавоноиды защищают растительные ткани от избыточной радиации. Это подтверждается локализацией флавоноидов в эпидермальных (близких к поверхности) клетках растений.
• в процессе оплодотворения высших растений;
• обуславливают огромное разнообразие окрасок цветков и плодов, что привлекает насекомых и тем самым способствуют опылению;
• некоторые флавоноиды защищают аскорбиновую кислоту от окисления (т.е. являются антиоксидантами).
· входя в состав экстрактивных веществ древесины, флавоноиды способны придавать ей особую прочность и устойчивость к поражениям патогенными грибами [2].
Сбор сырья проводится в фазу наибольшего накопления флавоноидов. Заготовку надземных частей проводят в фазу бутонизации или начала цветения, подземных – в конце вегетации [2]. В фазу цветения собирают цветки василька синего, пижмы, бессмертника, траву сушеницы, горцев, пустырника. Особенностью сбора сушеницы является выдергивание растения с корнем. Пустырник собирают при цветении нижних цветков. В фазе полного цветения наступает "перезревание", чашечка твердеет и становится колючей, а сырье считается некачественным. Траву череды собирают в период бутонизации. После цветения образуются плоды - семянки с колючими остями. Сбор дикорастущего сырья производят вручную с использованием ножей, ножниц и серпов. Для сбора культивированных растений (цветки бессмертника, плоды боярышника) применяют малую механизацию [7].
Сырье необходимо сушить вскоре после сбора, т.к. флавоноидные гликозиды под влиянием ферментов в присутствии влаги легко гидролизуются на сахар и агликон, а свободные агликоны могут окисляться.
Сушить сырье следует в тени или в сушилках с искусственным и естественным обогревом. Плоды сушат при температуре 70-90°С, траву - 50-60°С; цветки - 40°С. Не допускается сушка на солнце. Медленная сушка, особенно на солнце, ведет к разрушению флавоноидов.
Сырье необходимо оберегать от влаги и прямых солнечных лучей. Сохранять в плотно укупоренной таре, в хорошо проветриваемом помещении [2].
Для флавоноидов, как и для других веществ, не существует способа выделения, универсального для всех растительных материалов. В каждом конкретном случае прибегают к наиболее подходящему методу или сочетанию методов, с учётом в основном свойств веществ и особенностей растительного сырья. Наиболее часто используются избирательная экстракция, осаждение с помощью солей тяжёлых металлов и хроматографические методы [5].
Для выделения флавоноидов из растительного сырья в качестве экстрагента чаще всего используют метиловый или этиловый спирты или их смеси с водой.
Полученное спиртовое извлечение упаривают (упаривание проводят в вакууме при возможно низкой температуре (50-70º)), разбавляют горячей водой и удаляют липофильные вещества (жирные масла, смолы, хлорофилл) из водной фазы делительной воронки дихлорэтаном или четыреххлористым углеродом. После этой очистки агликоны извлекают этиловым эфиром, монозиды (в основном) этилацетатом и биозиды, триозиды – н- бутанолом, насыщенным водой.
Компоненты каждой фракции разделяют, используя колоночную хроматографию, с применением в качестве сорбента полиамида, силикагеля или целлюлозы. Элюирование веществ с колонки (агликоны) проводят смесью хлороформа с метанолом или этанолом с возрастающей концентрацией спиртов или спиртоводными смесями (гликозиды), начиная с воды и увеличивая концентрацию спирта [6].
Для отделения и очистки многих флавоноидов иногда используют их способность образовывать нерастворимые в воде и спирте соли при взаимодействии с ионами тяжелых металлов, а также влияние рН на образование таких осадков. Флавоноиды, содержащие свободные орто-гидроксильные группы в кольце В, при обработке их спиртовых растворов солями среднего или основного ацетата свинца образуют осадки, окрашенные в ярко-желтый и красный цвета. Осадки затем центрифугируют и после суспендирования в разбавленных спиртах разлагают с помощью сероводорода. Далее флавоноиды отделяют либо путем перекристаллизации, либо хроматографическими методами [5].