Смекни!
smekni.com

Понятие флавоноидов (стр. 3 из 4)

Для идентификации флавоноидов используют их физико-химические свойства: определение температуры плавления, определение удельного вращения гликозидов и сравнение их УФ-, ИК-, ПМР- спектров со спектрами известных образцов [6].

X. Методы анализа.

Качественное определение.

Для обнаружения флавоноидов в ЛРС используют химические реакции и хроматографию. Химические реакции подразделяются на цветные и реакции осаждения.

1.Цветные реакции.

1.Цианидиновая проба.

Общей реакцией на флавоноидные соединения является цианидиновая проба, проводимая с помощью концентрированной соляной кислоты и металлического магния. Действие водорода в момент выделения приводит к восстановлению карбонильной группы и образованию ненасыщенного пиранового цикла, который под действием соляной кислоты превращается в оксониевое соединение, имеющее окраску от оранжевой (флавоны) до красно-фиолетовой (флаваноны, флавонолы, флаванонолы).

Изменение условий восстановления путем замены магния на цинк приводит к изменению окраски. При использовании цинка по­ложительную реакцию дают флавонолы и флавонол-3-гликозиды, а флаваноны не обнаруживают ее.

Цианидиновую реакцию не обнаруживают халконы, ауроны, но при добавлении концентрированной соляной кислоты (без маг­ния) образуют красное окрашивание за счет образования оксониевых солей [6].

Для постановки реакции 1 г порошка сырья заливают 10 мл 95% этанола, нагревают на водяной бане до кипения и настаивают 3-4 ч. Спиртовое извлечение фильтруют, упаривают до объема 2 мл, делят пополам и разливают в 2 пробирки; в каждую пробирку прибавляют по 3 капли концентрированной хлористоводородной кислоты. В 1-ю пробирку добавляют 0,03-0,05 г цинковой пыли и нагревают на водяной бане до кипения. Жидкость окрашивается в красный цвет. Во 2-й пробирке окрашивание отсутствует [7].

ЦИАНИДИНХЛОРИД

2. Борно-лимонная реакция (реакция Вильсона- Таубека).

5-оксифлавоны и 5-оксифлавонолы, взаимодействуя с борной ки­слотой в присутствии лимонной (реактив Вильсона), образуют жел­тую окраску с красноватой флюоресценцией в УФ-свете. При замене лимонной кислоты на щавелевую (реактив Таубека) в УФ-свете отме­чается зеленая или желтая флюоресценция.

3. Реакция с треххлористой сурьмой.

5-оксифлавоны и 5-оксифлавонолы, взаимодействуя с треххлори­стой сурьмой, образуют комплексные соединения, окрашенные в жел­тый или желто-оранжевый цвет - флавоны, в красный или красно-фиолетовый - халконы.

4. Характерной реакцией на флавоноиды является их взаимодей­ствие сощелочами с образованием желтой окраски. Халконы и ау­роны дают со щелочами красное или ярко-желтое окрашивание, антоцианидины-синее окрашивание.

5. Флавоноиды со свободной 7-оксигруппой легко образуют азо-красители с диазотированной сулъфаниловой кислотой и другими производными ароматических аминов[6]. Появление тотчас же оранжево-красной окраски в видимом свете указывает на присутствие 7-оксифлавонов, 7-оксифлавонолов, 7-оксиизофлавонов. Появление окраски через 1-2 минуты, подтверждает наличие 7-оксифлавононов [5].

6. Ряд флавоноидов дает окрашенные комплексы с ионами алю­миния, циркония, окрашенные, как правило, в УФ-свете в ярко-желтый цвет, что используется при их хроматографическом обнару­жении.

7. Как все фенольные соединения, флавоноиды взаимодействуют с хлоридом окисного железа с образованием различно окрашенных комплексов (от зеленого до коричневого). Реакция мало специфична [6].

2. Реакции осаждения.

Все флавоноиды с основным ацетатом свинца образуют осадки, окрашенные в ярко-жёлтый или красный цвет.

Средним ацетатом свинца осаждаются лишь флавоноид, содержащие свободные орто-гидроксильные группы в 3’4’-положениях кольца В [2].

3. Хроматография.

Для обнаружения флавоноидов в растительном материале широко используется бумажная и тонкослойная хроматография. Флавоноиды идеально подходят для хроматографического анализа благодаря их различной растворимости, сорбционной способности, а также характерным окраскам самих веществ в видимом и фильтрованном ультрафиолетовом свете до и после проявления различными хромогенными реагентами. Обнаружение флавоноидов на хроматограммах проводят:

• по окраске пятен в видимом свете (антоцианы);

• по характеру свечения в УФ-свете: флавоны, флавонол-3-О-гликозиды, флаваноны и халконы обнаруживаются в виде темно-коричневых пятен, флавонолы и их 7-О-гликозиды – в виде желтых или желто-зеленых;

• по характеру свечения в УФ-свете после проявления 5%-ным спиртовым раствором хлорида алюминия и последующего прогревания хроматограммы при 105°С в течение 2-3 мин, наблюдают пятна флавоноидов с интенсивной желтой и желто-зеленой флуоресценцией [2].

Количественное определение.

Для количественного определения флавоноидов в растительном сырье наибольшее распространение получили физико-химические методы, прежде всего фотоколориметрия и спектрофотометрия.

1. Фотоколориметрический методоснован:

• на цветных реакциях комплексообразования с солями различных металлов (алюминия, циркония, хрома, сурьмы);

• на реакции с лимонно-борным реактивом;

• на реакции восстановления атомарным водородом в кислой

среде в присутствии металлического магния или цинка.

2. Спектрофотометрическийметод,основанный на способности флавоноидов поглощать свет в УФ-области спектра.

3. Хромато-спектрофотометрический метод - более совершенный метод количественного определения флавоноидов, используется в сочетании с хроматографией, что позволяет произвести очистку и разделение суммы веществ на отдельные компоненты.

Реже используют:

4. Флюориметрический метод.

5. Полярографический метод.

6. Наличие фенольных гидроксилов, обуславливающих слабокислые свойства флавоноидов, позволяет использовать метод кислотно-основного титрования в неводных растворителях:

диметилформамиде, диметилсульфоксиде, ацетоне [2].

XI. Применение флавоноидов в медецине и других отрослях народного хозяйства.

Диапазон терапевтического применения растительного сырья, богатого флавоноидами, очень широк. Флавоноиды не токсичны для человека при любом способе введения.

Ранее других биологических свойств флавоноидов было обнаружено их сосудоукрепляющее действие. Благоприятное влияние флавоноидов на состояние капиллярной системы обычно проявляется в снижении патологически повышенной проницаемости капилляров и в устранении их ломкости и хрупкости. Именно это свойство витамина Р открывает широкие возможности для терапевтического его применения, так как повышение проницаемости и ломкости сосудов довольно часто встечается в патологии человека. Так, изменение сосудистой стенки наблюдается при ревматизме, гипертонической болезни, базедовой болезни, пневмониях и при многих инфекционных заболеваниях.

Установленно, что флавоноиды способствуют сохранению аскорбиновой кислоты в организме, приводят к её накоплению в органах, прежде всего в надпочечниках. Учитывая эти данные, флавоноиды рекомендуют больным С-гиповитаминозом в комплексе с аскорбиновой кислотой.

Кроме того, флавоноиды оказывают нормализующее влияние на лимфоток, с чем, по-видимому, согласуется их противоотечное действие.

Наряду с действием на сосуды, флавоноиды известны и как слабые кардиотонические средства: они способны урежать ритм сердечных сокращений и увеличивать их амплитуду. По другим данным, кверцетин, рутин и другие флавонолы восстанавливают силу утомленного или гиподинамического сердца, нормализуют пульс. Некоторые флавоноиды обладают слабым гипотензивным действием.

Флавоноидные соединения влияют на состав крови, снижают уровень холестерина и β-липопротеидов, что наблюдали под действием кверцетина, лютеолина и других Р-витаминных препаратов.

Одним из ценных свойств флавоноидов является их положительное влияние на функцию печени: они усиливают желчеотделение, улучшают ее детоксицирующую способность по отношению к таким веществам, как барбитураты, мышьяк. Детоксикации организма способствует свойство флавоноидов оказывать мочегонное влияние. Некоторые флавоноиды из семейства норичниковых благоприятно влияют на пищеварение, понижают тонус гладкой мускулатуры кишечника, и оказывают спазмолитическое действие при спазмах мускулатуры желудочно-кишечного тракта. Большое значение придается противовоспалительному действию флавоноидов, с чем, возможно, связаны их противоязвенное, ранозаживляющее, жаропонижающее и вяжущее действия. Привлекают внимание и антимикробные свойства флавоноидов. Так, выявлено отрицательное влияние кверцетина на граммположительных бактерий, флавонов и халконов – на стафилококка. Антимикробное действие отмечается у антоцианов.

В заключение перечня свойств флавоноидов необходимо упомянуть об их противоопухолевом, радиозащитном, также об эстрогенном действии одной из групп – изофлавонов, которые благодаря этому свойству могут воздействовать на воспроизводительную функцию организма [7].