Для анализа изотопов более тяжелых элементов используется термоионизация или ионизация в индуктивно-связанной плазме. Во многих типах изотопных масс-спектрометров используются магнитные масс-анализаторы. Важнейшими техническими характеристиками масс-спектрометров являются чувствительность, динамический диапазон, разрешение, скорость сканирования.
Оптические методы изотопного анализа (напр., абсорбционные на основе диодных лазеров) в ряде случаев позволяют избавиться от изобарных наложений (то есть помех при совпадении масс изотопов или изотопомеров различных элементов), которые часто препятствуют измерениям, проводимым при помощи масс-спектрометров.
Г) Фазовый анализ - определение химического состава и количества отдельных фаз в гетерогенных системах или индивидуальных форм соединения элементов в рудах, сплавах, полупроводниках и др. Объектом фазового анализа всегда является твердое тело.
Название "фазовый анализ" стало доминирующим, хотя некоторые авторы продолжают использовать другие термины: вещественный, рациональный, композиционный, локально-распределительный анализ. Обилие названий - следствие исторического процесса становления фазового анализа. Он возник из практических потребностей металлургии и металловедения, с одной стороны, и горно-обогатительного производства - с другой. Позднее фазовый анализ стал необходим в технологии полупроводников, при экологических исследованиях и в производстве пищевых продуктов.Основным методом фазового анализа в горной промышленности был процесс избирательного химического растворения с помощью K-T, щелочей, солей, окислительно-восстановительных реагентов и комплексообразующих веществ. В этой области фазовый анализ использовали для разработки рациональных технологий флотационного разделения и обогащения горнохимического сырья, его гидрометаллургической обработки. При этом, прежде всего стояли задачи идентификации, выявления и разделения различных оксидных или сульфидных соединений нескольких металлов или одного металла в разных степенях окисления. Причем эти соединения могли быть не только нативными (исходными) фазами - минералами, но и виртуальными (промежуточными, т. е. изолируемыми в ходе анализа, как, напр., индивидуальные оксиды, выделяемые из сложных природных соединений при обработке реагентами). Поэтому такой анализ можно было считать фазовым более или менее условно, а по существу он был рациональным (т. е. служил основой рациональной технологии) и вещественным, т.е. направленным на выделение и определение данного сложного или простого вещества, независимо от того, составляет ли оно с самого начала определенную фазу.
Предметом аналитической химии является химическая идентификация( качественный анализ) и измерения(количественный анализ).
1.1Качественный анализ
Качественный анализ имеет своей целью обнаружение определенных веществ или их компонентов в анализируемом объекте. Обнаружение проводится путем идентификации веществ, то есть установления тождественности (одинаковости) АС анализируемого объекта и известных АС определяемых веществ в условиях применяемого метода анализа. Для этого данным методом предварительно исследуют эталонные вещества, в которых наличие определяемых веществ заведомо известно. Например, установлено, что присутствие спектральной линии с длиной волны 350,11 нм в эмиссионном спектре сплава, при возбуждении спектра электрической дугой, свидетельствует о наличии в сплаве бария; посинение водного раствора при добавлении к нему крахмала является АС на присутствие в нем I2 и наоборот.
В настоящее время качественный анализ выполняют инструментальными методами: спектральными, хроматографическими, электрохимическими и др. Химические методы используют на отдельных стадиях инструментальных (вскрытие пробы, разделение и концентрирование и др.), но иногда с помощью химического анализа можно получить результаты более просто и быстро, например, установить наличие двойных и тройных связей в непредельных углеводородах при пропускании их через бромную воду или водный раствор KMnO4. При этом растворы теряют окраску.
Детально разработанный качественный химический анализ позволяет определять элементный (атомный), ионный, молекулярный (вещественный), функциональный, структурный и фазовый составы неорганических и органических веществ.
При анализе неорганических веществ основное значение имеют элементный и ионный анализы, так как знание элементного и ионного состава достаточно для установления вещественного состава неорганических веществ. Свойства органических веществ определяются их элементным составом, но также и структурой, наличием разнообразных функциональных групп. Поэтому анализ органических веществ имеет свою специфику.
Качественный химический анализ базируется на системе химических реакций, характерных для данного вещества - разделения, отделения и обнаружения.
К химическим реакциям в качественном анализе предъявляют следующие требования.
1. Реакция должна протекать практически мгновенно.
2. Реакция должна быть необратимой.
3. Реакция должна сопровождаться внешним эффектом (АС):
а) изменением окраски раствора;
б) образованием или растворением осадка;
в) выделением газообразных веществ;
г) окрашиванием пламени и др.
4. Реакция должна быть чувствительной и по возможности специфичной.
Реакции, позволяющие получить внешний эффект с определяемым веществом, называют аналитическими, а добавляемое для этого вещество - реагентом. Аналитические реакции, проводимые между твердыми веществами, относят к реакциям «сухим путем», а в растворах - «мокрым путем».
К реакциям «сухим путем» относятся реакции, выполняемые путем растирания твердого исследуемого вещества с твердым реагентом, а также путем получения окрашенных стекол (перлов) при сплавлении некоторых элементов с бурой.
Значительно чаще анализ проводят «мокрым путем», для чего анализируемое вещество переводят в раствор. Реакции с растворами могут выполняться пробирочным, капельным и микрокристалли-ческим методами. При пробирочном полумикроанализе его выполняют в пробирках вместимостью 2-5см3. Для отделения осадков используют центрифугирование, а выпаривание ведут в фарфоровых чашечках или тиглях. Капельный анализ (Н.А. Тананаев, 1920 г.) осуществляют на фарфоровых пластинках или полосках фильтрованной бумаги, получая цветные реакции при добавлении к одной капле раствора вещества одной капли раствора реактива. Микрокристаллический анализ основан на обнаружении компонентов с помощью реакций, в результате которых образуются соединения с характерным цветом и формой кристаллов, наблюдаемых в микроскоп.
Для качественного химического анализа используют все известные типы реакций: кислотно-основные, окислительно-восстановительные, осаждения, комплексообразования и другие.
Качественный анализ растворов неорганических веществ сводится к обнаружению катионов и анионов. Для этого используют общие и частные реакции. Общие реакции дают сходный внешний эффект (АС) со многими ионами (например, образование катионами осадков сульфатов, карбонатов, фосфатов и т.д.), а частные - с 2-5 ионами. Чем меньше число ионов дают сходный АС, тем селективнее (избирательнее) считается реакция. Реакция называется специфической, когда позволяет обнаружить один ион в присутствии всех остальных.
Аммиак обнаруживают по запаху или по посинению красной лакмусовой бумажки, смоченной в воде и помещенной над пробиркой.
Селективность реакций можно повысить, изменяя их условия (рН) или применяя маскирование. Маскирование заключается в уменьшении концентрации мешающих ионов в растворе меньше предела их обнаружения, например путем их связывания в бесцветные комплексы.
Если состав анализируемого раствора несложен, то его после маскировки анализируют дробным способом. Он заключается в обнаружении в любой последовательности одного иона в присутствии всех остальных с помощью специфических реакций, которые проводят в отдельных порциях анализируемого раствора. Поскольку специфических реакций немного, то при анализе сложной ионной смеси используют систематический способ. Этот способ основан на разделении смеси на группы ионов со сходными химическими свойствами путем перевода их в осадки с помощью групповых реактивов, причем групповыми реактивами воздействуют на одну и ту же порцию анализируемого раствора по определенной системе, в строго определенной последовательности. Осадки отделяют друг от друга (например, центрифугированием), затем растворяют определенным образом и получают серию растворов, позволяющих в каждом обнаружить отдельный ион специфической реакцией на него.
Существует несколько систематических способов анализа, называемых по применяемым групповым реактивам: сероводородный, кислотно-основный, аммиачно-фосфатный и другие. Классический сероводородный способ основан на разделении катионов на 5 групп путем получения их сульфидов или сернистых соединений при воздействии H2S, (NH4)2S, NaS в различных условиях.
Анионы при анализе в основном не мешают друг другу, поэтому групповые реактивы применяют не для разделения, а для проверки наличия или отсутствия той или иной группы анионов. Стройной классификации анионов на группы не существует.