Научно-технологический комплекс «Фан ва тараккиёт» (Узбекистан)
Бурное развитие различных областей народного хозяйства вызывает необходимость в расширении ассортимента материалов, поставляемых полимерной промышленностью. Одновременно возрастают и требования, предъявляемые к высокомолекулярным соединениям. Они должны обладать такими специфическими свойствами, как термическая, радиационная стойкость, прочность, эластичность, твердость, способность к дальнейшим химическим превращениям.
В этом плане одним из основных направлений современных исследований является синтез олигомерных и полимерных стабилизаторов, антиоксидантов для получения термостойких композиционных материалов.
Исходя из вышеизложенного, нами синтезирован легко доступный мономер-стабилизатор [1], который в своем составе содержит серосодержащее производного тиазола. Благодаря наличию реакционноспособного атома галоида в хлорангидриде акриловых и метакриловых кислот возможен синтез ряда новых мономеров, содержащих разнообразные функциональные группы, которые способствуют в дальнейшем получению полимеров и композитов на их основе с заранее заданными свойствами, в частности, имеющих «стабилизирующие» группы.
Анализируя существующие литературные данные, установили, что непосредственно взаимодействием хлорангидрида метакриловых кислот с натриевой солью 2-меркаптобензтиазола в гетерогенной среде был синтезирован мономерный стабилизатор 2-тиобензтиазолметакрилат.
Для определения оптимальных условий полимеризации 2-тиобензтиазол-метакрилата было изучено влияние различных факторов на процесс полимеризации в присутствии кислорода воздуха, в среде азота, а также в вакууме. Из результатов исследования (табл.1), видно, что при одной и той же концентрации инициатора скорость полимеризации в присутствии атмосферного кислорода снижается.
Это указывает на то, что в процессе полимеризации полимерные цепи, вступая в реакцию со свободными радикалами, образуют перекисные группы, которые устойчивы в условиях изучаемых температур и тем самым ингибируют процесс полимеризации, вследствие чего уменьшаются скорость полимеризации и молекулярная масса образующегося полимера.
Таблица 1
Зависимость степени превращения политиобензтиазолметакрилата от продолжительности реакции при различных условиях (Т=343К)
Условия реакции | Время, с×102 | Выход, % |
Кислород | 18 36 54 | 5 10 15 |
Азот | 18 36 54 | 10 20 30 |
Вакуум | 18 36 54 | 30 50 65 |
С целью выяснения влияния температуры на кинетику гомополимеризации 2-тиобензтиазолметакрилата, нами был изучен процесс полимеризации при различных температурах и постоянной концентрации мономера и инициатора. Исследование показало (табл.2), что полимеризация 2-тиобензтиазолметакрилата протекает в присутствии радикальных инициаторов при температуре 343-358 К и выше.
Таблица 2
Зависимость скорости полимеризации и выхода полимера в бензольном растворе от температуры ( концентрация 2-тиобензтиазолметакрилата – 1,702 моль/л, ДАК – 0,0243 моль/л )
Темпера – тура, К | Время, с | Выход, % | lg 100 100-х | Кп. 103 мин-1 | Средняя скорость полимеризации, моль/л.с.104 |
338 348 358 | 300 600 900 1200 1500 300 600 900 1200 1500 300 600 900 1200 1500 | 1,0 1,3 2,2 3,1 4,0 1,6 3,2 4,8 6,6 8,4 3,0 5,6 8,0 10,2 12,5 | 0,0043 0,0056 0,0096 0,0136 0,0177 0,0032 0,0032 0,0032 0,0034 0,0035 0,0132 0,0250 0,0362 0,0467 0,0579 | 1,59 3,32 5,66 | 1,15 2,45 4,18 |
Таким образом, установлено, что на процесс полимеризации существенно влияет температура среды. На основании результатов по изучению влияния температур на процесс полимеризации была вычислена кажущаяся энергия активации процесса полимеризации тиобензтиазолметакрилата, составляющая 67, 87 кДж/моль, что характерно для акриловых и метакриловых мономеров.
Литература
1. А.с. СССР № 525679 2-меркапто-бензтиазолметакрилаты как термостабилизаторы полимеров и способ их получения / О.М.Яриев, А.Т.Джалилов, М.А.Аскаров и др., 1976.
УДК 541.6
Новые термочувствительные сополимеры 2-гидроксиэтилакрилата и бутилакрилата и интерполимерные реакции с их участием
А.Б.Бейсегул, П.И.Уркимбаева, Г.А.Мун, С.М.Нигм, З.С.Нуркеева
Казахский национальный университет им. аль-Фараби (Казахстан)
В настоящей работе для синтеза новых термочувствительных полимеров использован подход, основанный на сополимеризации мономеров с существенным различием в гидрофильно-гидрофобном балансе химической структуры, что позволяет регулировать соотношение гидрофильных и гидрофобных звеньев в макроцепях и соответственно, температуру фазовых переходов в системе полимер-вода в широких пределах. В качестве исходных сомономеров использован гидрофильный 2-гидроксиэтил-акрилат (ГЭА) и гидрофобный бутилакрилат (БА).
Для оценки относительной активности ГЭА и БА в радикальной сополимеризации методом дилатометрии была исследована кинетика процесса. При этом установлено, что скорость сополимеризации практически не зависит от состава исходной мономерной смеси (ИМС). Для сополимеров (СПЛ), выделенных на начальных стадиях конверсии, методом ЯМР(Н1)-спектроскопии (ЯМР-спектрометр «Bruker Avance 250 DPX», Великобритания) определен состав по соотношению интегральных интенсивностей сигналов ЯМР-спектра в области 4,70-4,83 м.д. и 3,53-3,55 м.д., принадлежащих гидроксильным и СН2-группам в a-положении к гидроксилу звеньев ГЭА, соответственно, а также пиков в области 0,84-0,9 м.д и относящихся к метильным группам звеньев БА. Как видно из таблицы, содержание сомономеров в составе СПЛ практически не отличается от их концентрации в исходной мономерной смеси. Обработка этих данных по уравнениям Майо-Льюиса и Файнмана-Росса, показала, что для обоих сомономеров константы сополимеризации близки к единице и равны для r1= 0,95 (ГЭА) и г2=0,94 (БА). Следовательно, ГЭА и БА проявляют практически одинаковую реакционную способность и для них характерна «азеотропная» сополимеризация.
Состав, молекулярно-массовые характеристики и характеристическая вязкость для сополимеров ГЭА-БА
Состав ИМС | Состав сополимеров | hуд/С, дл/г | Мn | Mw/Mn | ||
ГЭА, мол.% | БА, мол.% | ГЭА, мол.% | БА, мол.% | |||
30,0 | 70,0 | 29,1 | 70,9 | 0,45 | ||
40,0 | 60,0 | 40,4 | 59,6 | 0,46 | ||
50,0 | 50,0 | 50,6 | 49,4 | 0,45 | ||
60,0 | 40,0 | 60,9 | 39,1 | 0,44 | ||
70,0 | 30,0 | 71,0 | 29,0 | 0,43 | 119 900 | 1,59 |
80,0 | 20,0 | 81,2 | 18,8 | 0,42 | 130 260 | 1,58 |
90,0 | 10,0 | 91,2 | 8,8 | 0,41 | 102 970 | 1,58 |
95,0 | 5,0 | 95,2 | 4,8 | 0,42 | 113 370 | 1,96 |
В работе для полученных СПЛ ГЭА-БА изучены молекулярно-массовые характеристики с помощью гель-проникающего хроматографа, оборудованного детектором Aligent 1100 series RI (см. таблицу). Анализ полученных результатов показывает, что сополимеры обладают достаточно высокой молекулярной массой (порядка 104), значение которой зависит от состава ИМС и соответственно, от состава СПЛ. Кроме того, большинство СПЛ ГЭА-БА характеризуются низким значением коэффициента полидисперсности, что свидетельствует о достаточно узком молекулярно-массовом распределении полученных сополимеров. Характеристическая вязкость спиртовых растворов сополимеров незначительно увеличивается с увеличением содержания БА в ИМС, что, возможно, связано с улучшением термодинамического качества растворителя с повышением содержания БА в составе сополимера.
На основе изучения влияния температуры на оптическую плотность водных растворов сополимеров различных концентраций методом турбидиметрии (УФ-спектрофотометр «UV-2401-РС Shimadzu» Япония при l= 400 нм) построены фазовые диаграммы растворения (рис.1), из которых следует, что водные растворы СПЛ ГЭА-БА характеризуются наличием нижней критической температуры растворения (НКТР).
Наличие НКТР для сополимеров ГЭА-БА обусловлено определенным сочетанием гидрофильных и гидрофобных звеньев в структуре сополимера. Значение НКТР зависит от состава СПЛ, при этом СПЛ с большим содержанием гидрофобного компонента (БА) выпадает в осадок при более низких температурах. Таким образом, новые линейные сополимеры ГЭА-БА проявляют свойства, характерные для термочувствительных полимеров.
Рис.1. Фазовые диаграммы растворимости водных растворов сополимеров ГЭА-БА: [ГЭА]:[БА]= 95,2:4,8(1), 93,3:6,7(2), 91,2:8,8 мол.%
В работе изучены интерполимерные взаимодействия СПЛ ГЭА-БА с поликарбоновыми кислотами - полиакриловой (ПАК) и полиметакриловой (ПМАК). На рис. 2 показано, что смешение водных растворов СПЛ ГЭА-БА с растворами поликарбоновых кислот (ПКК) сопровождается экстремальным снижением приведенной вязкости и повышением мутности системы, что свидетельствует об образовании интерполимерных комплексов (ИПК), стабилизированных кооперативной системой водородных связей. Положение экстремумов указывает на формирование поликомплексов стехиометрического (для системы СПЛ-ПАК) и нестехиометрического (для системы СПЛ-ПМАК) составов.
В ИК-спектре (ИК-спектрометр с Фурье-преобразованием «Satellite FTIR Mattson», США) поликомплекса отчетливо проявляются характеристические полосы, принадлежащие обоим полимерным компонентам.
В качестве критерия комплексообразующей способности полученных сополимеров к поликарбоновым кислотам использовалась критическая величина комплексообразования (рНкрит), рН растворов регулировалась с помощью цифрового иономера ²Jenway-3345² (Великобритания). Показано, что повышение содержания гидрофобных звеньев БА в составе СПЛ способствует сдвигу величины рНкрит в область более высоких значений рН. Это свидетельствует о возрастании комплексообразующей способности СПЛ по отношению к ПАК за счет усиления вклада гидрофобных взаимодействий в дополнительную стабилизацию поликомплекса, однако, для системы СПЛ-ПМАК такого влияния звеньев БА на устойчивость образующегося ИПК не наблюдается. При увеличении концентрации исходных полимерных компонентов, молекулярной массы ПАК, ионной силы раствора также наблюдается сдвиг критических величин рН в область больших значений. Показано, что присутствие в растворе поверхностно-активных веществ (ПАВ) катионного и анионного типов способствуют снижению комплексообразующей способности системы.