Таким образом, методом радикальной сополимеризации получены новые термочувствительные водорастворимые сополимеры на основе 2-гидроксиэтилакрилата и бутилакрилата. Определены составы сополимеров и их молекулярно-массовые характеристики. Установлено, что для водных растворов линейных сополимеров характерно наличие нижней критической температуры растворения, значение которой удается регулировать варьированием гидрофильно-гидрофобного баланса макроцепей сополимеров. Методами вискозиметрии, турбидиметрии и ИК-спектро-скопии исследовано взаимодействие новых сополимеров 2-гид-роксиэтилакрилата и бутилакрилата с поликарбоновыми кислотами.
УДК 678.5
ПОЛУЧЕНИЕ НА ОСНОВЕ ОКСИДОВ МЕТАЛЛОВ КОМПОЗИЦИОННЫХ ПОКРЫТИЙ ПРИ ПОЛЯРИЗАЦИИ ПЕРЕМЕННЫМ АСИММЕТРИЧНЫМ ТОКОМ
Ж.И.Беспалова, Л.Г.Мирошниченко,
И.А.Пятерко, Ю.А.Ловпаче, Ю.Д.Кудрявцев
Южно-Российский государственный технический университет
(Новочеркасский политехнический институт)
Представляется перспективным получение на базе анодного оксида алюминия (АОА) композиционных покрытий (Пк) [1] путем наполнения оксида политетрафторэтиленом (ПТФЭ), осуществляемое либо пропиткой [2,3] сформированного оксида, либо совмещением пропитки с анодным окислением металла постоянным током [4]. Такие Пк обладают высокими антикоррозионными и диэлектрическими свойствами, могут служить хорошим подслоем для последующего нанесения фторполимерного Пк. Применение переменного асимметричного тока для этих целей более эффективно, так как позволяет регулировать пористость и толщину АОА и влияет на распределение по глубине пор веществ, осаждающихся на электродах [5].
Формирование АОА с одновременным заполнением его ПТФЭ проводили из фонового электролита, содержащего серную, щавелевую и сульфосалициловую кислоты переменным асимметричным током промышленной частоты [6].
Ячейкой служил стеклянный стакан, в который помещали рабочий электрод из технического алюминия А99,5, свинцовый противоэлектрод, термометр и магнитную мешалку. Поверхностное сопротивление образцов определяли в 0,1 М растворе сульфата натрия с помощью моста переменного тока Р-568 при частоте 520 Гц и напряжении на образце не более 10 мВ. Содержание фтора в АОА определяли на пленках, полученных в условиях, близких к оптимальным, методом рентгеновской флуоресценции [7] на спектрометре фирмы Rigaki серии 3270. В качестве образца сравнения использовали диск из фторопласта. Изменяемыми параметрами были средний анодный ток, концентрация щавелевой кислоты и ПТФЭ. Количество сульфосалициловой кислоты (9,3 г/л), серной (15 г/л) и средний катодный ток (9,5 мА) поддерживали постоянными (табл.1).
Таблица 1
Сопротивления пленок и содержание в них фтора при разных условиях получения
№ оп. | Анодный средний ток, мА | Концентрация щавелевой кислоты, г/л | Концентрация ПТФЭ, г/л | Сопротивление (Ом) АОА, сформированного в растворе | Содержание фтора, масс. % | |
фона | фона с добавкой с ПТФЭ | |||||
1 | 0,3 | 40 | 25 | 2147 | 6021 | 5,1 |
2 | 0,3 | 80 | 5 | 2677 | 5014 | 1,8 |
3 | 0,9 | 80 | 25 | 3366 | 6551 | 5,7 |
4 | 0,3 | 40 | 5 | 2147 | 3408 | 2,8 |
5 | 0,9 | 40 | 25 | 1778 | 13971 | 7,5 |
6 | 0,9 | 60 | 15 | 3684 | 10600 | 6,6 |
7 | 1,5 | 84 | 39 | 2677 | 4431 | 5,2 |
8 | 2,1 | 100 | 55 | 2894 | 3371 | 4,0 |
9 | 0,9 | 40 | 5 | 1778 | 7134 | 0,87 |
10 | 0,3 | 80 | 25 | 640 | 2364 | 13,9 |
11 | 0,9 | 80 | 5 | 3366 | 7081 | 2,2 |
Статистический анализ полученных результатов показывает, что самая сильная связь у измеряемых параметров обнаруживается между сопротивлением пленки и содержанием в ней фтора (если отбросить две точки – с максимальным сопротивлением и минимальным содержанием фтора). Коэффициент корреляции составляет 0,8. Следовательно, независимо от условий получения пленки, ее сопротивление в основном определяется содержанием в ней фтора. При содержании фтора выше 10 %, сопротивление пленки падает (опыт 10). Объясняется это возрастанием толщины Пк и его частичным отслаиванием, что можно наблюдать, рассматривая образцы под микроскопом.
1. Сайфулин Р.С. Физико-химия неорганических и композиционных материалов. / Р.С.Сайфулин, М.: Химия, 1990. 239 с.
2. Заявка 4124730 Германия [DE], МКИ С 25 D 11/18, B 05 D 7/17. Способ введения полимеров в микропористые поверхности. 1994. Бюл. №4. С.3.
3. Пат. 0537867 ЕПВ МКИ С 25 D 11/18, 11/20. Способ получения изделия из композиционного материала на основе алюминия. 1994. Бюл. №8. С.8.
4. Пат. 1-212795 Япония МКИ С 25 D 11/04, 11/08, 11/10, 11/18. Способ пропитки ПТФЭ алюминиевого пленочного гальванопокрытия анодным окислением. 1990. Бюл.№7. С.29.
5. Кудрявцев Ю.Д. Распределение количества прошедшего электричества в пористом электроде при поляризации переменным током / Ю.Д.Кудрявцев, Ф.И.Кукоз, Н.Е.Галушкин // Электрохимия. 1989. Т.25, №6. С.887-893.
6. Зорохович А.Е. Устройства для заряда и разряда аккумуляторных батарей. / А.Е.Зорохович, В.А.Бельский, Ф.И.Эйгель. М.: Энергия, 1975. 63 с.
7. Пилипенко А.Г. Аналитическая химия. / А.Г.Пилипенко, И.А.Пятницкий. М.: Химия, 1990. Т.2. 846 с.
УДК 691:681.5
РАЗВИТИЕ НАУЧНЫХ ОСНОВ И МЕТОДОВ СИНТЕЗА композиционных МАТЕРИАЛОВ специального назначения
Пензенский государственный университет архитектуры и строительства
С начала второй половины XX в. возникла и получила последующее развитие теория искусственных строительных конгломератов (ИСК) как важнейший компонент современного строительного материаловедения. Она была разработана И.А. Рыбьевым и его научной школой. В ней изложены: сущность теоретической технологии; научные принципы формирования оптимальных структур, при которых материалы становятся подобными между собой экстремальными значениями структурочувствительных свойств; общие и притом объективные (т.е. встречающиеся в природе) закономерности изменения свойств (закон створа, закон конгруэнции, закон прочности и некоторых других свойств) в математических выражениях; основные аспекты долговечности материалов; теория методов (методология) научного исследования и технического контроля качества и т.п.
Общая теория ИСК состоит из четырех взаимосвязанных разделов – теория структурообразования; структурная теория прочности, деформированности и конгруэнции свойств ИСК при оптимальных структурах; теория долговечности ИСК в конструкциях зданий и сооружений; теория методов научного исследования и технического контроля качества ИСК.
Оптимальная структура характеризуется: равномерным распределением по объему заполнителя, фаз, компонентов, пор и других составляющих ее элементов; отсутствием или минимальным содержанием дефектов как концентраторов напряжений или аккумуляторов агрессивной среды; наличием непрерывной пространственной сетки, или матрицы, из вяжущего вещества; минимальным значением отношения массы среды к массе твердой фазы, именуемого условно как фазовое отношение; наибольшей плотностью упаковки твердых частиц как в микро-, так и в макроструктурной частях.
Многолетний процесс накапливания теоретических и практических знаний об отдельных материалах и технологиях достиг такой интенсивности, что назрела настоятельная необходимость качественной трансформации и систематизации этих знаний в рамках единой обобщающей теории. Такой теорией стала полиструктурная теория, разработанная В.И. Соломатовым и его школой в 60-70-е годы прошлого столетия. Ее появление обусловлено объективной необходимостью систематизации и обобщения огромной научной и практической информации о технологиях конкретных строительных материалов на традиционных и новых связующих с применением последних достижений физики, химии и других фундаментальных наук. Это, прежде всего, касается бетонов на цементных, асфальто-битумных, полимерных, металлических и других связующих, информация о которых рассеяна по многочисленным источникам, различно и противоречиво трактующих их получение, свойства и применение в строительстве.
Главная отличительная особенность новой теории заключается в том, что принцип полиструктурности представляется не только как классификационный фактор или методический прием для объяснения тех или иных особенностей структуры и свойств материала, а как ключ к направленному изменению и формированию требуемых физико-технических свойств этого материала и к назначению его рациональной технологии. В соответствии с этой теорией бетоны представляются полиструктурными, т.е. составленными из многих структур (от атомных и молекулярных до грубых макроструктур), переходящих одна в другую по принципу «структура в структуре». С инженерной точки зрения, наиболее важно рассмотрение общей структуры на двух характерных уровнях: микроструктура и макроструктура. Такое разделение структуры достаточно для практической технологии и хорошо отражает объективные закономерности структурообразования и формирования свойств композитов – бетонов. При этом имеется в виду, что внутри микро- и макроструктуры заключены структуры, отличные от рассматриваемых уровней.