Смекни!
smekni.com

Химические источники тока (стр. 3 из 7)

Для медно-водородного элемента:

Н2, Pt | H+ || Cu2+ | Cu (9)

ЭДС рассчитывают по уравнению:

Eэ = φCu2+/CuH+/H2 = φCu2+/Cu (10)

ЭДС элемента и соответственно потенциал по водородной шкале можно определить или экспериментально компенсационным методом, или термодинамически по известным значениям энергии Гиббса токообразующих реакций. Например, токообразующей реакцией в водородно-цинковом элементе будет:

Zn + H2+Zn2+ + H2 (11)

По термодинамическим данным можно найти энергию Гиббса этой реакции и по уравнению рассчитать ЭДС элемента.

3.5 Потенциалы металлических электродов

При погружении металла в раствор собственных ионов устанавливается равновесие Ме ↔ Меn+ + nе-. При равновесии скорость растворения металла равна скорости разряда его ионов. Потенциал, устанавливающийся на электроде при равновесии, называется равновесным потенциалом металла. Для его измерения нужен гальванический элемент:

H2, Pt | H+ || Men+ | Me (12)

рн = 1 aH+ = 1

Токообразующей в этом элементе будет реакция:


Меn+ + n/2 Н2 →Ме + nН+ (13)

Поскольку φл = 0, ЭДС элемента равна потенциалу электрода по водородной шкале Eэ = EMen+/Me. Так как, по условию, рн = 1 aH+ = 1, то

EMen+/Me = EMen+/Me +
(14)

где аМеn+ — активность ионов металла.

Уравнение (14) называется уравнением Нернста. Переходя из натуральных логарифмов к десятичным и подставляя в уравнение (14) T = 298 К и соответствующие значения R и F, получаем:

EMen+/Me = EMen+/Me +
(15)

Для разбавленных растворов, в которых активности малоотличаются от концентраций (а ≈ С), в уравнении активность можно заменить концентрацией. Величина ЕMen+/Me называется стандартным потенциалом металлического электрода. Значение Е0Men+/Me можно получить при аМen+ = 1. Тогда lg аMen+ = 0 и ЕМеn+/ме = Е0Men+/Me, следовательно, стандартным потенциалом металлического электрода называют потенциал этого электрода в растворе собственных ионов с активностью их, равной 1.

Стандартные потенциалы металлических электродов в водных растворах приведены в таблице(дана в приложении), которая является одновременно и рядом стандартных электродных потенциалов. Стандартные электродные потенциалы металлов указывают на меру восстановительной способности атомов металла и меру окислительной способности ионов металла. Чем более отрицательное значение имеет потенциал металла, тем более сильной восстановительной способностью он обладает. Например, литий, имеющий наиболее отрицательный стандартный потенциал, относится к наиболее сильным восстановителям. И наоборот, чем более положителен потенциал металлического электрода, тем более сильной окислительной способностью обладают его ионы. Из таблицы видно, что к наиболее сильным окислителям принадлежат ионы золота, платины, палладия, серебра и ртути.

3.6 Основные характеристики ХИТ

Основные характеристики ХИТ — количество энергии, которое можно от них получить, и напряжение, при котором они работают. Напряжение при разряде зависит от э.д.с. применяемой электронной пары, т.е. от разности потенциалов электродов при отсутствии отбора от них тока, от поляризации электродов при работе (т.е. от изменений потенциалов электродов при отборе от них тока) и от падения напряжения на преодоление внутреннего омического сопротивления ХИТ. Величина э.д.с обусловлена свойствами активных материалов электродов, составом и концентрацией электролита и температурой ХИТ. С ростом температуры э.д.с, как правило, немного возрастает.

Напряжение при разряде Up , меньше э.д.с:

Uр = E - Eпол - Ir, (16)

где Е — э.д.с. В; Eпол.р — поляризация электродов при разряде, В; I — сила тока при разряде А; r — омическое сопротивление аккумулятора, Ом.

Напряжение при заряде U3 выше э.д.с:

Uз = E + Eпол +Ir. (17)

Поляризация при разряде возникает в силу ряда причин. Основная — это пассивация электродов, из-за которой при разряде потенциал положительного электрода становится отрицательнее, а отрицательного — положительнее, чем в отсутствие тока. Пассивация, в первую очередь, происходит из-за покрытия поверхности активных масс пленками, плохо проводящими ток. В ряде случаев (например, у железного электрода) это тончайшая пленка кислорода или оксидов, иногда пленка состоит из слоя труднорастворимых солей (например, в свинцовом аккумуляторе). Как известно из курса теоретической электрохимии, на потенциалы электродов и э.д.с. влияет концентрация электролита, с которым соприкасаются электроды. При разрядах и зарядах ХИТ из-за участия ионов в химическом процессе и переносе тока часто происходит местное (локальное) изменение концентрации электролита непосредственно у поверхности электродов и в их порах. Эти изменения концентрации у электродов изменяют их потенциалы: появляется концентрационная поляризация. При разряде она так же, как и пассивация, снижает напряжение ХИТ и при заряде увеличивает его. Если произошло общее изменение концентрации электролита в сосуде, то и после прекращении разряда в отсутствие тока э.д.с может быть ниже, чем была до разряда (например, в свинцовых аккумуляторах).

При заряде поляризацию, т. е. увеличение потенциалов электродов по сравнению с потенциалами в отсутствие тока, вызывают концентрационные явления (концентрационная поляризация) и необходимость преодолевать замедленный характер некоторых стадий электрохимического процесса (перенапряжение).

Чем большую плотность тока требуется создать на электродах, тем быстрее должны происходить процессы на них. Для ускорения процессов приходится затрачивать энергию, что и проявляется в возрастании потенциалов и напряжения. Как следует из формул (1) и (2), напряжение на клеммах зависит и от омического сопротивления ХИТ. Эта величина слагается из сопротивления проводников первого рода — токоотводов, активных масс и т. п. — и сопротивления электролита. Во многих конструкциях электролит находится в порах сепараторов, изготовляемых из изоляционных материалов.

В этих случаях часто условно говорят о сопротивлении сепараторов. При разрядах и зарядах при изменении концентрации электролита может меняться и омическое сопротивление ХИТ. Иногда Eпол и падение напряжения на преодоление омического сопротивления ХИТ Ir объединяют одним термином: «внутреннее сопротивление ХИТ» и рекомендуют способы приближенного определения такой условной величины. Это не всегда допустимо, так как Eпол и Ir по-разному меняются при изменении плотности тока.

Энергия А в ватт-часах, которую можно получить от ХИТ при разряде, зависит от среднего напряжения при разряде и емкости:

A=QU, (18)

где Q — емкость, А-ч.

При разряде постоянной силой тока емкость равна Q=It, т. е. произведению силы тока I на время его протекания t. Если сила тока выражена в амперах, а время в часах, емкость получим в ампер-часах. При разряде на постоянное внешнее сопротивление R сила тока постепенно падает, так как по мере разряда уменьшается напряжение ХИТ. В этом случае емкость равна произведению средней (средневзвешенной) силы тока на время его протекания или точнее. Для такого случая емкость можно найти графически, вычерчивая график зависимости силы тока I от времени t (рис. 4) и определяя площадь, соответствующую емкости (в А-ч). Точке М соответствует напряжение, принятое для данного разряда как конечное, при котором возможно полезно использовать энергию. Емкость зависит от количества активных веществ в ХИТ и степени их использования. Неполное использование происходит из-за пассивации активных материалов и в случае появления побочных процессов. Большую роль играют потери активных веществ из-за саморазряда, т.е. расхода материала на процессы, протекающие в ХИТ без использования энергии во внешней цепи. Саморазряд может происходить из-за растворения активных материалов в электролите разложения активных материалов с выделением кислорода, из-за утечки тока по внутренним замыканиям и т.п.

Ниже это будет рассмотрено применительно к отдельным типам ХИТ. Существуют ХИТ, саморазряд которых так велик, что их приходится хранить сухими и заполнять электролитом только в момент начала использования. Сохранность ХИТ одноразового действия непосредственно зависит от саморазряда. Сроком сохранности является время, в течение которого элементы при хранении сохраняют запас электрической энергии, оговоренной для данного типа ХИТ. Для аккумуляторов сохранение емкости также является важным, но если саморазряд превышает допустимую величину, аккумулятор можно во многих случаях подзарядить. Для аккумуляторов очень важным показателем является срок службы, выражаемый либо временем пригодности аккумулятора для работы, либо числом циклов заряда и разряда, которые можно произвести до потери аккумуляторами установленной для них величины емкости. Для автомобильных аккумуляторов срок службы иногда выражают в километрах пробега автомобиля до смены аккумулятора. В большинстве типов аккумуляторов заряд сопровождается значительными потерями энергии, которая расходуется на побочные процессы, главным образом разложение воды с выделением водорода и кислорода. Долю полезно использованной энергии характеризуют отдачей по энергии, т. е. отношением количества энергии, отдаваемой аккумулятором при разряде, к ее количеству, сообщенному за время предшествующего заряда. Аналогично этому характеризуют и отдачу аккумулятора по емкости.