Смекни!
smekni.com

Термодинамика химической и электрохимической устойчивости медно-никелевых сплавов (стр. 11 из 11)

Сплав МНЖМц30–1–1 по сравнению с МН19 обладает рядом различий в коррозионном поведении. Область иммунности значительно меньше, иммунность наблюдается только при сильной катодной поляризации. За счёт образования ферритов меди и никеля уменьшается область активного растворения в кислых средах, хотя область селективной коррозии марганца весьма широкая. Несмотря на то, что перепассивация мельхиора по марганцу и железу достигается уже при сравнительно невысоких значениях потенциалов, никелат-ионы (как и для сплава МН19) образуются только в условиях сильной анодной поляризации.

Линии a и b на диаграммах (рис. 2.2 – 2.7) определяют электрохимическое поведение воды (см. табл. 2.14).

Табл. 2.14. Электрохимические равновесия в воде

№ линии Электродная реакция Равновесный потенциал (В)
a
0,186–0,0591pH
b
1,219–0,0591pH

В области ниже линии a происходит катодное восстановление воды с выделением водорода. Область между линиями a и b определяет электрохимическую устойчивость воды. Выше линии b происходит окисление воды с выделением кислорода на аноде.

2.7 Обсуждение результатов

В работе определены активности компонентов мельхиоров МН19 и МНЖМц30–1–1. Установлено, что активность железа в мельхиоре МНЖМц30–1–1 выше единицы. Это означает, что мельхиор МНЖМц30–1–1 является метастабильной системой. При старении сплава железо выделяется из мельхиора в свободном виде в качестве новой фазы. Это вызывает упрочнение сплава и улучшение коррозионной стойкости против ударной коррозии, что подтверждает литературные данные [1].

Построена диаграмма состояния Cu – Ni – O и проанализирована химическая устойчивость медно-никелевых сплавов. Установлено, что медно-никелевые сплавы окисляются кислородом воздуха в нормальных условиях. Подтверждено, что окисление никеля из сплава на воздухе заканчивается образованием фазы нестехиометрического состава NiOx, что подтверждается диаграммой состояния Ni – O (рис. 1.4., [14]). Однако установлено, что в нормальных условиях и при повышенной температуре соединение NiO2 не образуется, что не подтверждается диаграммой 1.4.

Построены диаграммы рН – потенциал систем МН19 – Н2О и МНЖМц30–1–1 – Н2О и проанализирована электрохимическая устойчивость мельхиоров. Подтверждены литературные данные о высокой коррозионной стойкости МНЖМц30–1–1. Установлено, что область активного растворения сплава при высоких активностях ионов в растворе мала и сплав подвержен коррозии только в кислых средах, а в нейтральных и щелочных на его поверхности образуется пассивирующая плёнка [1, 4, 6].


Выводы

1) В работе в рамках обобщённой теории «регулярных» растворов рассчитаны температурные зависимости энергий смешения компонентов бинарной системы Cu – Ni.

2) Рассчитаны активности компонентов мельхиоров МН19 и МНЖМц30–1–1.

3) На основании построенной при 25оС диаграммы состояния Cu – Ni – О, проанализирована химическая устойчивость медно-никелевых сплавов.

4) Оценена область гомогенности фазы NiOx при различных температурах в равновесии с атмосферным воздухом.

5) На основании построенных диаграмм рН – потенциал систем МН19 – Н2О и МНЖМц30–1–1 – Н2О при 25оС и различных активностях ионов в растворе проанализирована электрохимическая устойчивость мельхиоров, определены области их различного коррозионного поведения.


Список литературы

1. Смирягин А.П. Промышленные цветные металлы и сплавы. М.: Металлургиздат, 1974. 559 с.

2. Лахтин Ю.М., Леонтьева В.П. Материаловедение. М.: Машиностроение, 1990. 527 с.

3. Краткая химическая энциклопедия/ Гл. ред. Кнунянц И.Л.

М.: Советская энциклопедия, 1964. Т. 3. С. 70 – 74.

4. Червяков В.И., Маркосьян Г.Н., Пчельников А.П. Коррозионное поведение медно-никелевых сплавов в нейтральных хлоридных сульфидсодержащих растворах // Защита металлов, 2004. Т. 40. №2. С. 123 – 127.

5. Кузнецов Ю.И., Рылкина М.В. Некоторые особенности локальной депассивации бинарных сплавов // Защита металлов, 2004. Т. 40. №5. С. 505 – 512.

6. Сирота Д.С., Пчельников А.П. Электрохимическое поведение α-фазы системы Cu30Ni – H в растворах гидроксида натрия // Защита металлов, 2005. Т. 41. №6. С. 652 – 655.

7. Сирота Д.С., Пчельников А.П. Электрохимическое поведение β-фазы системы Cu30Ni – H в растворах гидроксида натрия // Защита металлов, 2005. Т. 41. №6. С. 598 – 601.

8. Маркосьян Г.Н., Сирота Д.С., Пчельников А.П. Коррозия гидридов никеля и сплава Cu30Ni в кислородсодержащих растворах // Защита металлов, 2005. Т. 41. №4. С. 390 – 394.

9. Диаграммы состояния двойных металлических систем/ Под ред. Лякишева Н.П.М.: Машиностроение, 1997. Т. 2. С. 283 – 286.

10. Тюрин А.Г. Моделирование термодинамических свойств растворов. Челяб. гос. ун-т. Челябинск, 1997. 74 с.

11. Николайчук П.А. Определение термодинамических активностей компонентов бронзы БрБ2: Курсовая работа/ Челяб. гос. ун-т. Челябинск, 2006. 29 с.

12. Ермолаева И.В. Термодинамика химической и электрохимической устойчивости латуни ЛЦ40Мц1,5 (ЛМц58,5–1,5): Дипломная работа/ Челяб. гос. ун-т. Челябинск, 2004. 70 с.

13. Тюрин А.Г. Термодинамика химической и электрохимической устойчивости сплавов. Ч. 1. Общие принципы. Высокотемпературное окисление. Челяб. гос. ун-т. Челябинск, 2004. 86 с.

14. Тюрин А.Г. Термодинамика химической и электрохимической устойчивости сплавов. Ч. 2. Низкотемпературное окисление. Челяб. гос. ун-т. Челябинск, 2004. 91 с.

15. Справочник по электрохимии/ Под ред. Сухотина А.М.Л.: Химия, 1981. 488 с.

16. Тюрин А.Г. О природе влияния меди на коррозионную стойкость железа // Защита металлов, 2004. Т. 40. №3. С. 256 – 262.

17. Равновесные превращения металлургических реакций/ Рузинов Л.П., Гуляницкий Б.С.М.: Металлургия, 1975. 416 с.