Повышение температуры электролиза и концентрации NaCl в электролите, благодаря которым уменьшается растворимость хлора, а также снижение концентрации NaOH в католите сокращают вероятность побочных процессов.
Повышение температуры электролиза увеличивает не только выход по току, но и электропроводность электролита, благодаря чему снижается напряжение на ванне. Таким образом, повышение температуры уменьшает расход электрической энергии и поэтому обычно электролиз растворов хлорида натрия проводят при 70—80° С.
Промышленные электролизеры с фильтрующей диафрагмой широко применяются в промышленности. Схема такой ванны приведена на рис. 1 Ванна имеет стальной перфорированный (с отверстием) катод и графитовый анод. К катоду плотно прилегает фильтрующая диафрагма из асбестового картона.
Раствор хлорида натрия подается в анодное пространство, фильтруется сквозь диафрагму и достигает катода. Скорость фильтрации электролита характеризуется так называемой протекаемостью диафрагмы v (см3/ч) и зависит от площади сечения диафрагмы F (см1), гидростатического давления столба электролита h , толщины диафрагмы b (см) и вязкости электролита μ .При прохождении постоянного электрического тока на аноде образуется хлор, на катоде — водород и щелочь, которая, проходя через отверстия катода, стекает в катодное пространство и удаляется из ванны.
Рис. 1.
Схема ванны с фильтрующей диафрагмой:
1— диафрагма; 2 — стальной катод;
3 — катодное пространство;
4 — анод; 5 — анодное пространство
В ваннах не происходит полного разложения поваренной соли и
устанавливается постоянная концентрация щелочи и неразложившейся поваренной соли.
В электролитическом щелоке, вытекающем из ванны, содержится 110—120 г/л NaOH и 180—170 г/л NaCl.
Промышленные электролизеры должны иметь большую производительность, что достигается увеличением нагрузки. Применение катодов с очень развитой поверхностью позволяет создавать компактные электролизеры с нагрузкой до 50000 а. Диафрагма в этом случае насасывается или «осаждается» на поверхность катода из суспензии асбестового волокна в соляно-щелочных растворах при помощи вакуума.
Рис. 2. Ванна с осажденной диафрагмой:
1— бетонное днище; 2 — стальной катод; 3 — бетонная крышка; 4 — труба для подачи рассола; 5 — труба для отвода хлора; 6 — графитовые аноды; 7 — штуцер для удаления водорода; 8 — трубка для слива электролитического щелока; 9 — медный токоведущий
стержень
Примером ванны с осажденной диафрагмой может служить ванна Хукера типа S, рис. 2. Эта ванна состоит из трех основных частей — бетонного днища, стального катода и бетонной крышки. Днище имеет форму прямоугольного корыта, в котором залиты свинцом нижние концы графитовых анодов и медный стержень, служащий для подвода тока. Аноды представляют собой графитовые пластины. Катод — стальная рама, внутри которой смонтирован ряд плоских карманов из стальной сетки. Расположение карманов и их ширина таковы, что установке катода на днище ванны карманы помещаются точно между анодами.
В крышке ванны расположены отверстия для подачи рассола и отвода хлора. Электролизер имеет тепловую изоляцию уменьшающую потери энергии за счет отдачи тепла в окружающую среду.
Электролиз растворов хлорида натрия в ваннах с ртутным катодом и графитовым анодом .
Дает возможность получать более концентрированные продукты, чем в ваннах с диафрагмой.
При пропускании через раствор NaCl постоянного электрического тока на графитовом аноде происходит разряд ионов С1- с последующим выделением газообразного хлора
2С1- - 2е Þ С12
На ртутном катоде выделение водорода происходит с большим перенапряжением. Если на железном катоде потенциал выделения водорода из нейтрального раствора равен 0,415 в, то на ртутном катоде он составляет 1,7 - 1,85 в. Натрий же на ртути выделяется с большим эффектом деполяризации, обусловленным образованием амальгамы натрия NaHgn, растворяющейся в избытке ртути. Благодаря этому потенциал разряда натрия на ртутном катоде оказывается ниже равновесного, а именно 1,2 в, в то время как его равновесный потенциал равен 2,71 в. Таким образом, на ртутном катоде протекают следующие процессы:
Na+ + еÞ Na
Na + nНg = NaHgn
и водород практически почти не выделяется.
Амальгама натрия разлагается в специальном аппарате — разлагателе водой по реакции
NaHgn + Н20 = NaOH + 1/2Н2 + nHg
Электролиз в ванне с ртутным катодом протекает в среднем при напряжении 4,3—4,4 в.
Ванна с ртутным катодом, принципиальная схема которой приведена на рис. 3, состоит из двух частей: электролизера и разлагателя.
Электролизер и разлагатель конструктивно могут быть разделены и сообщаться друг с другом трубопроводом или могут быть расположены в одном общем кожухе.В любом случае электролизер — длинный ящик прямоугольного сечения, сверху закрытый крышкой, в которой укреплены графитовые аноды. Рис. 3. Схема ванны с ртутным катодом:
1— электролизер; 2 — разлагатель; 3 — насос
К слегка наклонному дну ванны подведена катодная шина и по нему непрерывно движется тонкий слой ртути. Таким образом, днище ванны является катодом. Электролизер питается концентрированным (310—315 г/л) раствором хлорида натрия, который в процессе электролиза обедняется поваренной солью до концентрации 260—270 г/л, выводится из ванны, обесхлоривается под разряжением и при продувке его сжатым воздухом, донасыщается солью, очищается от примесей (в схеме не показано) и передается обратно на электролиз. Образующийся хлор выводится через крышку ванны.
При движении ртути по дну электролизера в процессе электролиза получается амальгама натрия, которая растворяется в ртути и выводится из электролизера в разлагатель. Разлагатели могут быть различной конструкции — горизонтальные и вертикальные. Горизонтальные разлагатели представляют собой прямоугольный желоб, закрытый крышкой. В разлагатель поступает вода и из него отводятся образующиеся продукты — водород и щелочь. Дно разлагателя имеет небольшой уклон, благодаря чему ртуть движется по дну, выводится из разлагателя и подъемниками различного типа передается в электролизер.
Ванна с ртутным катодом занимает большие площади, что связано с горизонтальным расположением ртутного катода. Существуют ванны, в которых катодами служат вертикальные амальгамированные диски. Эти ванны компактны, но сложны конструктивно и в эксплуатации.
Сопоставление основных показателей работы ванн двух типов показывает, что вследствие высокого напряжения на ваннах с ртутным катодом расход энергии выше, чем в диафрагменных. Кроме того, эксплуатация ванн с ртутным катодом более сложна, чем диафрагменных, капитальные затраты на их установку выше и условия труда в цехах, оборудованных ртутными ваннами, тяжелее, чем в цехах, где установлены ванны с диафрагмой.
Возможность получения в ртутных ваннах концентрированных щелоков, свободных от поваренной соли, является существенным достоинством ртутных ванн. Исходя из этого во всех случаях, когда требуется чистая щелочь (например, для производства вискозного волокна), предпочтение должно быть отдано ваннам с ртутным катодом. В связи с ростом потребности в чистом каустике электролиз в ваннах с ртутным катодом приобрел большое распространение.
Щелочь, получаемая при электролизе, в виде растворов, подвергается концентрированию в выпарных аппаратах. Щелочь из диафрагменных ванн содержит до 130— 140 г/л NaOH и 180—170 г/л NaCl. Растворимость поваренной соли с увеличением концентрации NaOH в растворе падает. Так, в щелоке, содержащем 50% (769 г/л) NaOH, при 20° С растворимость NaCl составляет 13,9 г/л. Вследствие этого при выпарке электролитических щелоков, полученных в ваннах с диафрагмой, наряду с концентрированием раствора происходит кристаллизация хлорида натрия, который возвращается на электролиз. Практически после упарки и плавки получают щелочь, содержащую 92—94% NaOH, 2-3% NaCl.
Вывод.
Таким образом гидроксид натрия на сегодняшний день получают методом электролиза водного раствора хлорида натрия. При этом используются два вида электролизеров, каждый из которых имеет свои достоинства и недостатки. Но в обоих случаях процесс получения гидроксида натрия сопровождается получением газообразных побочных продуктов, которые являются опасными веществами как для человека так и для окружающей среды. Поэтому следует соблюдать особые меры безопасности на данном производстве.
Литература .
1. Общая химическая технология . Под ред. И.П. Мухленова. Учебник для химико-технологических специальностей вузов. М.: Высшая школа.
2. Фурмер И.Э., Зайцев В.Н. Общая химическая технология. – М.: Высшая школа, 1978.