Не все вклады одинаковы важны. Для каждого класса задач выбираются наиболее важные составляющие потенциальной энергии молекулы, а другие не учитываются.
При моделировании методами молекулярной динамики или Монте-Карло интересующее нас свойство системы большого числа молекул вычисляется через статистические средние по положениям и движениям молекул. Как и в методах молекулярной механики, здесь также необходимо перечислить все частицы системы и задать потенциалы межчастичных взаимодействий. Однако в отличие от молекулярной механики в данных подходах области задания межчастичных потенциалов взаимодействия должны быть достаточно протяженными, и они не должны ограничиваться малыми смещениями от положений равновесия. Это накладывает существенно более высокие требования на способы расчета потенциалов.
Основная задача статистической теории - вычисление средних значений различных величин, которые характеризуют поведение системы в состоянии равновесия. Существуют два подхода к решению этой общей задачи. В первом случае среднее значение <А> некоторого свойства A( r, v ),которое предполагается зависящим от совокупности координат- {r} и скоростей {v} частиц, определяют путем усреднения множества "мгновенных" значений A[r(t),v(t)], наблюдаемых в последовательные моменты времени t на достаточно протяженном интервале t:[11]
А = (2.14)
Этот подход, называемый усреднением по времени, исходит из того, что нам известны законы движения частиц системы.
Альтернативный путь вычисления средних значений параметров системы был намечен еще Больцманом, а затем развит Гиббсом в стройную теорию. Идея этого подхода заключается в том, что наблюдаемое свойство рассматривается не как среднее по времени, а как среднее по множеству различных состояний системы, которые возникают с определенной вероятностью.
Такой подход называют усреднением по ансамблю.
Вероятность (или частота) возникновения того или иного состояния пропорциональна его статистическому весу w=e-U/kT, где U - потенциальная энергия данной конфигурации, k - константа Больцмана, Т - абсолютная температура. В этом случае наблюдаемые средние значения даются общим выражением
А =∫…∫ A(r)w(r)dr/ ∫…∫w(r)dr(2.15)
Оба фундаментальных принципа определения средних значений могут быть положены в основу вычислительных схем, реализуемых на компьютере. При этом необходимо знать лишь способ расчета потенциальной энергии системы как функции координат r. Результаты расчетов, какого - либо свойства одной системы вычисляемые по одному и другому пути должны совпадать при длительном времени наблюдения за системой в первом подходе и при очень большом числе испытаний во втором подходе.
Метод математического моделирования, основанный на подходе усреднения по времени наблюдения называют методом молекулярной динамики. Суть его состоит в следующем:
Рассмотрим систему, состоящую из заданного числа частиц (атомов или молекул). В классической механике движение каждой частицы i с массой mi может быть описано уравнением Ньютона
miai(t) = fi(t)(масса´ускорение = сила). (2.16)
Здесь fi(t)- сила, действующая в данный момент времени t на частицу iсо стороны всех остальных частиц системы (эта сила связана с потенциальной энергией известным соотношением fi(t) = -¶U/¶ri); ускорение определяется как аi(t) = dvi(t)/dt или ai(t) = d2ri/dt2. Если эти производные заменить их конечно-разностными аналогами, то систему уравнений Ньютона, записанных для всех частиц, можно решить на компьютере. То есть, зная координаты частиц r(t) и отвечающие им силы f(t)в некоторый момент времени t, можно через небольшой промежуток времени Dt найти новые координаты r(t+Dt) и силы f(t+Dt) в следующий момент времени t+Dt и т.д., шаг за шагом. Очевидно, что скорости оцениваются как v» [r(t+Dt)-r(t)]/Dt. Вычисляя на каждом шаге интересующий нас параметр А можно проследить его эволюцию во времени, а усреднив по достаточно большому числу сделанных шагов s получаем искомые равновесные свойства. Такую схему расчета принято называть численным экспериментом динамического типа или просто методом молекулярной динамики (МД). Используются также различные вариации метода МД, в которых наряду с "внутренними" силами, обусловленными взаимодействием атомов друг с другом, включаются те или иные внешние силы. Подобные схемы моделирования составляют группу методов неравновесной молекулярной динамики.
Вычислительнуюсхему, в основе которой лежит альтернативный (вероятностный) принцип определения средних значения, называют методом статистических испытаний или методом Монте-Карло (МК). В этом методе переходы между состояниями системы осуществляются следующим образом. На каждом шаге случайным образом выбирается частица (или группа частиц) и перемещается на небольшое расстояние в случайном направлении. Это приводит к изменению потенциальной энергии системы на некоторую величину DU, которая и определяет вероятность перехода р ~ е-DU/kT из "старого" в "новое" состояние системы. Интересующие характеристики вычисляются на каждом шаге и усредняются по большому числу сделанных шагов.
В обоих рассмотренных методах отсутствуют какие-либо физические упрощения. Эти методы основываются на общих принципах классической физики и, в сущности, представляют собой лишь математическую (численную) реализацию соответствующих фундаментальных подходов к определению макроскопических характеристик системы исходя из заданных микроскопических законов взаимодействия частиц. В определенном смысле компьютерную программу, по которой ведутся расчеты методами МД или МК, можно рассматривать просто как некую "формулу" (хотя, возможно, и чрезвычайно громоздкую). По этой формуле шаг за шагом (то есть оператор за оператором) отслеживается вся логическая цепочка переходов от исходных соотношений, составляющих базис современного естествознания, к конечному результату. Поэтому если в программе нет ошибок и предусмотрен надлежащий контроль статистических погрешностей (неизбежных при машинных вычислениях), то полученные результаты будут строгими, то есть имеющими силу аксиомы для выбранной математической модели физической системы.
Компьютерная имитация методами молекулярной динамики или Монте-Карло модели физической системы с целью изучения ее характеристик в зависимости от заданных параметров представляет собой численный (компьютерный) эксперимент с этой моделью
Как уже упоминалось, что число частиц при моделировании методами Монте-Карло и молекулярной динамики с помощью современных суперкомпьютеров может достигать колоссальных величин. Даже без суперкомпьютеров достаточно типичны численные эксперименты для значений N порядка десятков и сотен тысяч. Примеры успешного применения методов Монте-Карло и молекулярной динамики для моделирования равновесных составов смесей при постоянном давлении, фазовых равновесий, адсорбции на поверхности твердых тел, свойств жидкостей в микропорах и т.д. достаточно многочисленны. Этими же методами решаются задачи поиска устойчивых конформаций (поворотных изомеров) полимерных молекул, чрезвычайно важные для биохимических приложений.[12,13]
N,V, U(r1, r2, ...,rn)
Монте-Карло Молекулярная динамикаN, V, TN, V, E
Генератор случайных Решение уравнений динамикидвижений F= ma
Отбор с вероятностями P = e-U/kTТраектории r(t), v(t) Усреднение УсреднениеРавновесные свойства Равновесные и неравновесные
свойства
РИС. 2.2. Схема расчетов методами Монте-Карло и молекулярной динамики.
На основе решёточной модели выполнено множество теоретических построений, в частности связанных с решением классической и, в каком то смысле, основной задачи физикохимии полимеров о влиянии объемных взаимодействий на конформацию и, соответственно, на свойства гибкой полимерной цепи. Под объемными взаимодействиями обычно подразумевают короткодействующие силы отталкивания, которые возникают между удаленными вдоль по цепи звеньями, когда они сближаются в пространстве за счет случайных изгибов макромолекулы [14,15]. В решеточной модели реальную цепь рассматривают как ломаную траекторию, которая проходит через узлы правильной решетки заданного типа: кубической, тетраэдрической и др. Занятые узлы решетки соответствуют полимерным звеньям (мономерам), а соединяющие их отрезки - химическим связям в скелете макромолекулы. Запрет самопересечений траектории (или, иными словами, невозможность одновременного попадания двух и более мономеров в один решеточный узел) моделирует объемные взаимодействия (Рис. 2.3.). В методе МК при смещении случайно выбранного звена оно попадает в уже занятый узел, то такая новая конформация отбрасывается и уже не учитывается в вычислении интересующих параметров системы. Различные расположения цепи на решетке соответствуют конформациям полимерной цепи. По ним и проводится усреднение требуемых характеристик, например расстояния между концами цепи R.