Смекни!
smekni.com

Химический элемент - Скандий (стр. 2 из 3)

Сплавы скандия

Главным по объёму применения скандия является его применение в алюминиево-скандиевых сплавах, применяемых в спортивной экипировке (мотоциклы, бейсбольные биты и т. п.) — везде, где требуется высокопрочные материалы. В сплаве с алюминием скандий обеспечивает дополнительную прочность и ковкость. Предел прочности на разрыв у чистого скандия около 400 МПа (40 кг/мм), у титана например 250—350 МПа, а у нелегированного иттрия 300 МПа. Применение скандиевых сплавов в авиации и ракетостроении позволит значительно снизить стоимость перевозок и резко повысить надёжность эксплуатируемых систем, в то же время при снижении цен на скандий и его применение для производства автомобильных двигателей так же значительно увеличит их ресурс и частично КПД. Очень важно и то обстоятельство что скандий упрочняет алюминиевые сплавы легированные гафнием. Важной и практически не изученной областью применения скандия является то обстоятельство что подобно легированию иттрием алюминия, легирование чистого алюминия скандием так же повышает электропроводность проводов и эффект резкого упрочнения имеет большие перспективы для применения такого сплава для транспортировки электроэнергии (ЛЭП). Сплавы скандия наиболее перспективные материалы в производстве управляемых снарядов. Ряд специальных сплавов скандия композитов на скандиевой связке весьма перспективен в области конструирования скелета киборгов. В последние годы важная роль скандия (и отчасти иттрия и лютеция) выявилась в производстве некоторых по составу суперпрочных мартенситностареющих сталей, некоторые образцы которых показали прочность свыше 700 кг/мм (свыше 7000 МПа).

Сверхтвёрдые материалы

Скандий используется для получения сверхтвёрдых материалов. Так, например, легирование карбида титанакарбидом скандия весьма резко поднимает микротвёрдость (в 2 раза), что делает этот новый материал четвёртым по твёрдости после алмаза (около 98,7 — 120 ГПа), нитрида бора (боразона), (около 77—87 ГПа), сплава бор-углерод-кремний (около 68—77 ГПа), и существенно больше чем у карбида бора(43,2 — 52 ГПа), карбида кремния (37 ГПа), микротвёрдость сплава карбида скандия и карбида титана около 53,4 ГПа (у карбида титана например 29,5 ГПа). Особенно интересны сплавы скандия с бериллием, обладающие уникальными характеристиками по прочности и жаростойкости. Так, например, бериллид скандия (1 атом скандия и 13 атомов бериллия) обладает наивысшим благоприятным сочетанием плотности, прочности и высокой температуры плавления, и может явится лучшим материалом для строительства аэрокосмической техники, превосходя в этом отношении лучшие сплавы из известных человечеству на основе титана, и ряд композиционных материалов (в том числе ряд материалов на основе нитей углерода и бора).

Микроэлектроника

Оксид скандия (температура плавления 2450°C) имеет важнейшую роль в производстве супер-ЭВМ: ферриты с малой индукцией при использовании в устройствах хранения информации позволяют увеличить скорость обмена данными в несколько раз из-за снижения остаточной индукции с 2 - 3 КГаусс до 0,8 - 1 КГаусс.)

Источники света

Порядка 80 кг скандия (в составе Sc2O3) в год используется для производства осветительных элементов высокой интенсивности. Иодид скандия добавляется в ртутно-газовые лампы, производящие очень правдоподобные источники искусственного света, близкого к солнечному, которые обеспечивают хорошую цветопередачу при съёмке на телекамеру.

Изотопы скандия

Радиоактивный изотоп Sc-46 (период полураспада 83,83 сут) используется в качестве «метки» в нефтеперерабатывающей промышленности, для контроля металлургических процессов, и лечения раковых опухолей.Изотоп скандий-47 (период полураспада 3,35 сут) один из лучших источников позитронов.

Ядерная энергетика

В атомной промышленности с успехом применяется гидрид и дейтерид скандия — прекрасный замедлитель нейтронов, и мишень (бустер) в мощных и компактных нейтронных генераторах. Диборид скандия (температура плавления 2250 °C) применяется в качестве компонента жаропрочных сплавов, а так же как материал катодов электронных приборов. В атомной промышленности находит применение бериллид скандия в качестве отражателя нейтронов, и в частности этот материал, равно как и бериллид иттрия предложен в качестве отражателя нейтронов в конструкции атомной бомбы.

Медицина

Важную роль оксид скандия может сыграть в медицине (высококачественные зубные протезы).

Лазерные материалы

Высокотемпературной сверхпроводимости, производстве лазерных материалов (ГСГГ). Галлий-скандий-гадолиниевый гранат при легировании его ионами хрома и неодима позволил получить 4,5 % КПД и рекордные параметры в частотном режиме генерации сверхкоротких импульсов, что даёт весьма оптимистичные предпосылки для создания сверхмощных лазерных систем для получения термоядерных микровзрывов уже на основе чистого дейтерия (инерциальный синтез) уже в самом ближайшем будущем. Так, например, ожидается что в ближайшие годы лазерные материалы на основе ГСГГ и боратов скандия займут ведущую роль в разработке и оснащении лазерными системами активной обороны для самолётов и вертолётов в развитых странах, и параллельно с этим развитие крупной термоядерной энергетики с привлечением гелия-3 (добываемого на Луне), в смесях с гелием-3 лазерный термоядерный микровзрыв уже получен.

Производство солнечных батарей

Оксид скандия в сплаве с оксидом гольмия используется в производстве фотопреобразователей на основе кремния в качестве покрытия. Это покрытие имеет широкую область прозрачности (400—930 нм), и снижает спектральный коэффициент отражения света от кремния до 1—4 %, и при его применении у такого модифицированного фотоэлемента увеличивается ток короткого замыкания на 35—70 %, что в свою очередь позволяет увеличить выходную мощность фотопреобразователей в 1,4 раза.

МГД-генераторы

Хромит скандия используется как один из лучших и наиболее долговечных материалов для изготовления электродов МГД-генераторов, к основной керамической массе добавляют предварительно окисленный хром и спекают, что придаёт материалу повышенную прочность и электропроводность. Наряду с диоксидом циркония как электродным материалом для МГД-генераторов, хромит скандия обладает более высокой стойкостью к эрозии соединениями цезия (используемого в качестве плазмообразующей добавки).

Рентгеновские зеркала

Скандий широко применяется для производства многослойных рентгеновских зеркал (композиции: скандий-вольфрам, скандий-хром, скандий-молибден). Теллурид скандия очень перспективный материал для производства термоэлементов (высокая термо-э.д.с, 255 мкВ/К и малая плотность и высокая прочность).

Огнеупорные материалы

В последние годы значительный интерес для авиакосмической и атомной техники приобрели тугоплавкие сплавы (интерметаллические соединения) скандия с рением (температура плавления до 2575 °C), рутением (температура плавления до 1840 °C), железом (температура плавления до 1600 °C), (жаропрочность, умеренная плотность и др).Важную роль в качестве огнеупорного материала специального назначения оксид скандия (температура плавления 2450 °C) играет в производстве сталеразливочных стаканов для разливки высоколегированных сталей, по стойкости в потоке жидкого металла оксид скандия превосходит все известные и применяемые материалы (так например наиболее устойчивая окись иттрия уступает в 8,5 раз оксиду скандия) и в этой области можно сказать незаменим. Его широкому применению препятствует лишь весьма высокая цена, и в известной степени альтернативным решением в этой области является применение скандатов иттрия армированных нитевидными кристаллами оксида алюминия для увеличения прочности, а так же применение танталата скандия.

Производство фианитов

Важную роль играет оксид скандия для производства фианитов, где он является самым лучшим стабилизатором. Некоторое количество скандия расходуется для легирования жаростойких сплавов никеля с хромом и железом (нихромы и фехрали) для резкого увеличения срока службы при использовании в качестве нагревательной обмотки для печей сопротивления.

Люминофоры

Борат скандия, равно как и борат иттрия применяется в радиоэлектронной промышленности в качестве матрицы для люминофоров.

Литература

http://ru.wikipedia.org/wiki

http://www.chem100.ru/index.htm

Для защиты реферата

Ска́ндий — элемент побочной подгруппы третьей группы, четвёртого периода периодической системы химических элементовД. И. Менделеева, с атомным номером 21 и атомной массой 44,9559, обозначается символом Sc (лат. Scandium). Простое вещество скандий (CAS-номер: 7440-20-2) — легкий металл серебристого цвета с характерным желтым отливом, который появляется при контакте металла с воздухом.

Известен один природный стабильный изотоп 45Sc. Из искусственных радиоактивных изотопов важнейший 46Sc с периодом полураспада 84 сут.

Скандий был предсказан Д. И. Менделеевым в 1870 году и выделен в 1879 году Л. Ф. Нилъсоном из минералов гадолинита и эвксенита, найденных в Скандинавии (лат. Scandia), отсюда и название элемента.

Скандий существует в двух кристаллических модификациях: α и β; при обычной температуре устойчива α-модификация с гексагональной решеткой (а = 3,3080 Å и с = 5,2653 Å), выше 1350 °С - β-модификация с кубической объемноцентрированной решеткой.

Скандий слабый парамагнетик, его атомная магнитная восприимчивость 236·10-6 (20 °С). Скандий - мягкий металл, в чистом состоянии легко поддается обработке - ковке, прокатке, штамповке.

Sc - первый переходный элемент с одним 3d-электроном; конфигурация внешних электронов атома 3d14s2. По химическому поведению сходен с другими переходными элементами в степени окисления +3 (например, Ti3+, Fe3+, Mn3+), элементами подгруппы Al, Be, а также элементами иттриевой подгруппы, вместе с которыми его иногда относят к редкоземельным элементам.