Смекни!
smekni.com

Переработка ТПО** и ТБО после проведения сепарации ТБО по группам (стр. 3 из 7)

В почвенных полостях всегда содержится воздух, насыщенный водяным паром, состав воздуха обогащен диоксидом углерода СО2 и сравнительно обеднен кислородом О2. Соотношение воздуха с СО2 и воды в виде водного раствора многих компонентов постоянно меняется и зависит от времени года и погодных условий. При этом колебания температуры почвенного слоя очень значительны у поверхности, но постепенно сглаживаются по мере углубления в почву. Основная особенность почвенного слоя - это постоянный динамизм, движение, поступление органических веществ за счет негумифицированных органических высокомолекулярных веществ растительного и животного происхождения, за счет отмирающих корней растений, опадающей листвы (все это источники углерода - С) и разлагающихся отмерших животных (источники азота - N).

Почвенный слой - это ценнейший источник энергии для всех животных и растений, для бактерий, грибов всех видов, многих животных. Почвенный слой - это самая насыщенная жизнью среда. Поэтому, качество почвенного слоя, плодородие почвы зависит от общей культуры земледелия, от длительности возделывания земли, от правильного рационального, научно-обоснованного землепользования. Качество почвы зависит от продолжительности возделывания земли и общей культуры землепользования. Пользуясь тем или иным земельным угодьем, человек берет из земли все необходимое для его жизни. А именно, зерно, корнеплоды, много других овощей, ягоды, фрукты и т.д.. Т.е. человек берет из земли, из почвы многие органические и неорганические вещества. Поэтому, чтобы не было истощения почвенного слоя земли необходимо регулярно и постоянно вносить в почву примерно то же самое количество органических и неорганических веществ в виде удобрений. Только высокая культура земледелия и высокая культура общего землепользования, заключающаяся в постоянном и регулярном внесении всех необходимых удобрений, в правильно научно-обоснованном соблюдении последовательности возделывания культур, т.е. в правильно организованном севообороте, только весь этот комплекс мер может повышать плодородие почвы. В тоже время варварское, потребительское отношение к земле приводит к обеднению почвенного слоя, деградации почвы и в конечном итоге, в результате бездумного обращения к земле, может привести к эрозии почвы даже очень плодородной и богатой вначале землепользования. Под эрозией почвы понимается процесс разрушения и выноса плодородного слоя водой или ветром и соответственно эрозия называется водной или ветровой эрозией. Необходимо, чтобы процесс разрушения почвенного плодородия шел медленнее процесса восстановления плодородия, а для этого необходимо именно научно-обоснованное землепользование.

Поэтому, в течение многих лет, начиная с 1976г. с некоторыми перерывами нами проводились исследования по возможности использования следующих органических материалов природного происхождения для внесения в почву. Нами была исследована возможность внесения следующих компонентов:

1. Твердых целлюлозно-бумажных отходов (ТЦБО) и твердых отходов производства сложных эфиров целлюлозы (ТОПСЭЦ).

2. Твердых производственных отходов древесины (ксилемы) в виде опилок, стружки и дробленой древесной коры, т.е. твердых древесных отходов (ТДО).

3. Волокнистых отходов производства хлопковой целлюлозы, применяемой для производства сложных эфиров целлюлозы для пластмасс.

4. Части твердых бытовых отходов (ТБО), состоящих из отходов бумаги, картона, древесины и пищевых отходов.

Было исследовано влияние введения этих материалов на изменение внешнего вида, на изменение структурного вида почвенного слоя, на появление и усиление комковатости исходных бесструктурных глинистых почв. Разумеется ниже описываемые эксперименты не являются этапом проведения экологической биотехнологии, а являются предварительным исследованием.

Экспериментально нами было установлено и подтверждены данные других исследователей, что кусочки различных препаратов целлюлозы, а также измельченные до 2-4 см листы бумаги и картона, пищевые отходы, в т.ч. мелкие кости рыбы и птицы измельченные до размера 2-5 см, заложенные в бесструктурную пластовую глинистую почву осенью (сентябрь-октябрь) при влажной погоде, пролежав осень и зиму к весне перегнивают. На месте закладки отходов весной всегда наблюдались колонии диких дождевых червей Annelida и всегда (обычно в конце апреля) образовывались на месте грубой некультивированной, бесструктурной почвы, не содержащей комочков очаги комковатости и одновременно изменялся цвет пластовой глины из коричневого становился более темный. В самом начале первых испытаний вместе с целлюлозными волокнами из бумаги, картона, хлопкового линта закладывались кусочки сложных эфиров древесной и хлопковой целлюлозы (СЭД и ХЦ) с массовой долью связанной уксусной кислоты 50-57%, ацетобутираты целлюлозы для алюнита и пластмасс, ацетофталаты целлюлозы. При этом СЭД и ХЦ имели слабую кислотность (рН

4-5). Размеры СЭД и ХЦ были до 4-5 см по максимуму. В течение трех лет подряд были подтверждены данные Имшенецкого о том, что процесс разложения СЭД и ХЦ идет сравнительно медленно. При этом при наличии в почвенном слое смеси целлюлозы (в виде бумаги, хлопка или картона), а также при наличии в том же месте СЭД и ХЦ всегда наблюдается так называемый диакустический рост. Т.е. всегда идет в первую очередь разрушение немодифицированного химически целлюлозного волокна в виде хлопка, кусочков бумаги и картона и уже после полного исчерпания целлюлозного волокна начинают медленно разрушаться в течение двух иногда трех лет СЭД и ХЦ. Т.е. разрушение СЭД и ХЦ длится очень медленно в течение 2-3 лет, что и подтверждает данные Имшенецкого. Это наблюдается и при раздельном введении целлюлозного волокна и СЭД и ХЦ. Всегда разрушение СЭД и ХЦ длится 2-3 года. Это можно объяснить различными причинами:

1. СЭД и ХЦ имеют более плотную макро- и микроструктуру.

2. СЭД и ХЦ отличаются от нативной (природной) целлюлозы химическим составом. Иначе говоря, введение кислотного остатка ацила в макромолекулу целлюлозы препятствует биохимическому разложению природного полимера. Процесс разложения СЭД и ХЦ зависит от проникновения биохимических агентов внутрь образцов (8).

Биодеградация (компостирование) - это экзотермический процесс биологического и биохимического разложения высокомолекулярных и олигомерных природных веществ и одновременно процесс синтеза ряда низкомолекулярных веществ в том числе ацетальдегида (СН3СНО) и далее уксусной кислоты (СН3СООН), и далее вплоть до образования диоксида углерода СО2 и воды Н2О. Все это нами было подтверждено экспериментально, в т.ч. хроматографически с участием З.А. Беловой. В этом процессе смешанный, точнее комбинированный субстрат подвергается биодеградации и биохимическому, а также биологическому разложению и одновременно происходит синтез под воздействием смешанной популяции микро- и макрофлоры; микро- и макрофауны в условиях повышенной температуры и влажности. В процессе биодеградации комбинированный субстрат претерпевает физические и химические превращения и в конечном итоге происходит потеря в весе на 35-40%% и образуется относительно стабильный гумифицированный конечный продукт компост (точнее биомасса). Этот продукт представляет особую ценность как средство улучшающее структуру почвы, точнее придающее почве комковатость.

Каковы же микро- и макробиологические аспекты формирования биомассы:

1. Микрофлора: бактерии; актиномиценты, последние интенсивно растут при повышенных температурах; грибы; дрожжи; водоросли; вирусы.

2. Микрофауна - простейшие.

3. Микрофлора - высшие грибы. Последнее высшие грибы, в т.ч. и шампиньоны мы наблюдали на гниющих кипах хлопка в 1990-1992г.г., когда проводили предварительные испытания на территории очистных сооружений ВХЗ.

4. Макрофауна - черви, клещи, двуногие, многоножки.

При проведении процесса биодеградации смеси природных материалов принимают участие многие бактерии, более 2 000 и не менее 50 видов грибов (6). Порогом температуры биодеградации служит температура +60 - +70°С (иногда до +75°С в жаркий летний период).

Сначала на первом этапе исследования и подтверждения параметров экологической биотехнологии работа проводилась без искусственного введения ферментов (энзимов) в исходное сырье. Затем на втором этапе работы вводились различные, специальным образом подобранные и рекомендованные нам лабораторией углеводов Института биохимии им. А.Н. Баха (М.Л. Рабинович), комбинации целлюлолитических ферментов. Итак, переходя уже к следующему основному этапу разработки способа экологической биотехнологии переработки ТБО наша фракция ТБО, состоящая из пищевых отходов, целлюлозного волокна, отходов дробленой древесины, картона выгружалась на одну из площадок приготовления биомассы (на одну карту). При этом здесь можно исходить из различных исходных предпосылок, а именно. Главное, как уже отмечалось ранее, для приготовления биомассы необходимо соблюдение следующего количественного элементарного состава углерода С к азоту N: С/N = 25/1-30/1. Исходя из этой главнейшей предпосылки необходимо знать, хотя бы на первых порах ориентировочно, это соотношение, а именно, если у нас приготовление биомассы осуществляется из основных фракций ТБО, т.е. из гниющих пищевых отходов (природных материалов), целлюлозного волокна и древесины, то здесь нужно рассчитать содержание всех компонентов так, чтобы это важнейшее соотношение С/N = 25/1-30/1 всегда строго соблюдалось. В качестве носителя азота, донора азота здесь выступают пищевые отходы животного природного происхождения: раздробленные кости рыбы, птицы и животных. Например, по данным, приведенным М.И. Мягковым и др. (13), сделан ориентировочный расчет соотношения С/N. Эти данные приведены в Главе 4. Это соотношение, как уже упоминалось в этой главе, по данным этих авторов 15-18/1. Это означает, что для строго правильного приготовления биомассы нужно ввести дополнительно в исходную смесь С-содержащий компонент - определенное заранее рассчитанное количество отходов растительного происхождения или целлюлозосодержащий компонент. То есть субстрат не содержащий азот N. Если соотношение С/N > 30/1, скажем составляет 40/1, то это значит, что необходимо ввести N-содержащий компонент. В качестве такого N-содержащего компонента могут быть пищевые отходы животного происхождения кости рыбы, птицы или других животных, но только дробленые до размера по максимуму 5 см.