Смекни!
smekni.com

Загрязнение и здоровье окружающей среды (стр. 8 из 11)

Другой важный аспект излучения — его доза — измеряется в раз­ных шкалах. Наиболее удобной единицей для всех типов излучения слу­жит рад. Один рад — это такая доза излучения, при которой на 1 г тка­ни поглощается 100 эрг энергии. Более старую единицу дозы — рентген (Р) — строго говоря, можно использовать только для гамма- и рентге­новских лучей. Однако, пока речь идет о воздействии на живые орга­низмы, рад и рентген — почти одно и то же. В 1000 раз меньшие еди­ницы, а именно миллирентген (мР) или миллирад (мрад), удобны для измерения тех уровней излучения, которые часто регистрируются в окру­жающей среде. Важно подчеркнуть, что рентген или рад — это единицы суммарной дозы. Доза излучения, полученная в единицу времени, назы­вается интенсивностью дозы. Так, если организм получает 10 мР в час, то суммарная доза за 24 ч составит 240 мР, или 0,240 Р. Как мы уви­дим, очень важное значение имеет время, за которое организм получает данную дозу.

Приборы, используемые для измерения ионизирующего излучения, состоят из двух основных частей: 1) детектора и 2) электронного счетчи­ка. Для измерения бета-частиц обычно используются газовые счетчи­ки, такие, как счетчик Гейгера, а для измерения гамма- и других типов излучения широко применяют твердые или жидкостные сцинтиляционные счетчики (они содержат вещества, которые превращают невидимое излучение в видимое излучение, регистрируемое фотоэлектрической си­стемой).

Радиоактивные изотопы, имеющие важное значение в экологии

Каждому химическому элементу соответствуют разные типы атомов, все они имеют несколько различное строение, некоторые из них радио­активны, другие — нет. Эти варианты элементов называются изотопа­ми. Например, существует несколько изотопов кислорода, несколько изо­топов углерода и т. д. Радиоактивные изотопы нестабильны и при рас­паде превращаются в другие изотопы, испуская при этом излучение. Каждый радиоактивный изотоп характеризуется определенным чис­лом— атомным 'весом и распадается с определенной скоростью. Эту скорость принято называть периодом полураспада. Некоторые радиоак­тивные изотопы, имеющие важное значение для экологии, перечислены в табл. 59. Можно видеть, что 45Са — это радиоактивный изотоп каль­ция; его атомный вес равен 45 и каждые 160 дней он теряет половину своей радиоактивности. Период полураспада — величина, постоянная для данного изотопа (т. е. внешние факторы не влияют' на скорость разрушения); для разных радиоактивных изотопов величина его варьи­рует от нескольких секунд до многих лет. В общем крайне «короткоживущие» радионуклиды не представляют интереса для экологии.

Проникающая сила излучения зависит от его энергии. Большинство важных для экологии радиоактивных изотопов обладают энергиями от 0,1 до 5 Мэв (миллионов электронвольт). В табл. 59 указаны относи­тельные энергии каждого изотопа (точные оценки можно найти в стан­дартных справочниках). Чем выше энергия, тем больше — в пределах данного типа излучения — потенциальный ущерб для биологического материала. Но, с другой стороны, изотопы с высокой энергией легче об­наруживаются в очень небольших количествах; поэтому они более удоб­ны в качестве «меток», или индикаторов. Например, гамма-излучатели высокой энергии, такие, как кобальт-60, цезий-134, скандий-46 или тантал-182, служат .полезными «метками», с помощью которых можно сле­дить снаружи за передвижениями под корой деревьев или в почве.

ТАБЛИЦА 59 Экологически важные радионуклиды. Группа А. Естественные изотопы, участвующие в создании фонового излучения

Период полураспада Изотопы Излучение
Уран-235 (236U) 7-108 лет Альфа*** Гамма*
Уран-238(2звЦ) 4.5.109 » »
Радий-226(^Ra) 1620 » » »
Торий-232(232тп) 1,4-1010 > »
Калнй-40(4°К) 1,3.10» » Бета*** Гамма***
Углерод-14 (см. группу Б)
Группа Б. Изотопы элементов, которые являются существенными компонентами организмов
Кальций-45(45Са) 160 дней Бета**
Углерод-14(14С) 5568 лет Бета*
Кобальт-60(60Со) 5,27 > Бета** Гамма***
Иод-131 (13Ч) 8 дней Гамма**

Как показывает табл. 59, с экологической точки зрения радиоак­тивные изотопы можно разбить на несколько довольно хорошо различи­мых групп. В группу А входят встречающиеся в природе радиоактивные изотопы, участвующие в создании фонового излучения. В группу Б вхо­дят изотопы элементов, являющихся существенными компонентами тка­ней животных и растений; они поэтому имеют большое значение в каче­стве меток при изучении метаболизма сообщества и как источники внут­реннего облучения.В группу В входят продукты деления урана -и некото­рых других элементов; большинство этих элементов несущественны для метаболизма (за исключением иода-131). Однако элементы этой груп­пы опасны, так как они в больших количествах образуются при ядерных взрывах, а также при управляемых ядерных реакциях при производстве электричества или других полезных форм энергии. Хотя большинство из этих изотопов не представляют собой существенные компоненты про­топлазмы, они легко включаются в биогеохимические циклы, и многие из них, особенно нуклиды стронция и цезия, накапливаются в пищевых цепях. Обратите внимание, что многие изотопы группы В производят «дочерние изотопы» (изотопы, образующиеся при распаде другого изотопа), которые часто обладают большей энергией, чем ис­ходные изотопы. Человек надеется со временем научиться использовать энергию ядерного синтеза, выделяемую в водородной бомбе, и заменить ею энергию ядерного деления, которая лежит сейчас в основе развития ядерной энергетики. При этом мы избавились бы от продуктов деления, но не решили бы проблем, создаваемых тритием (3Н) и наведенной радиоактивностью.

СРАВНИТЕЛЬНАЯ РАДИОЧУВСТВИТЕЛЬНОСТЬ

Разные виды организмов сильно различаются по своей способности выдерживать большие дозы облучения. На фиг. 223 показана сравни­тельная чувствительность представителей трех разных типов организмов к некоторым дозам рентгеновских или гамма-лучей. Большие дозы, по­лучаемые организмом за короткое время (минуты или часы), называют острыми дозами в противоположность хроническим дозам сублетального облучения, которые организм мог бы выдерживать на протяжении всей своей жизни. Вертикальные черточки слева указывают уровни, при ко­торых у более чувствительных видов данной группы могут возникнуть серьезные нарушения функции размножения (например, временная или постоянная стерильность). Черточки справа указывают уровни, которые вызывают немедленную гибель, большей части особей (50% и выше) более устойчивых видов. Стрелки, направленные влево, указывают ниж­ние границы доз, которые могут вызывать гибель или повреждение чув­ствительных стадий жизненного цикла, например эмбрионов. Так, доза 200 рад вызывает гибель эмбрионов некоторых насекомых на .стадии дробления, доза 5000 рад приводит к стерильности, но для того чтобы убить всех взрослых особей более устойчивых видов, потребовалась бы доза 100000 рад. В общем млекопитающие обладают наибольшей чув­ствительностью, а микроорганизмы наиболее устойчивы. Семенные рас­тения и низшие ^позвоночные находятся где-то между насекомыми и мле­копитающими. Как показывает большая часть исследований, наиболее чувствительны к облучению быстро делящиеся клетки (этим объясняет­ся снижение чувствительности с возрастом). Поэтому любой компонент системы (будь то часть организма, одна особь или популяция), претерпевающий быстрый рост, окажется, вероятно, восприимчивым к сравни­тельно низкому уровню излучения независимо от своего систематическо­го положения.

Фиг. 223. Сравнительная чувствительность трех разных организмов к единичной Острой дозе рентгеновских или гамма-лучей (объяснения — в тексте).

Воздействие низких хронических доз измерить сложнее, так как они могут вызывать отдаленные генетические и соматические эффекты. Спарроу (1962) сообщает, что хроническое облучение сосны (которая обладает сравнительно высокой чувствительностью) на протяжении 10 лет при дозе 1 Р в день (суммарная доза 25000 Р) вызывает пример­но такое же уменьшение скорости роста, как и острая доза 60 Р. Любое повышение уровня излучения в среде над фоновым или даже высокий естественный фон может повысить частоту вредных мутаций (подобно многим химическим веществам, добавляемым к пищевым продуктам, действию которых подвергает себя современный человек).

У высших растений чувствительность к ионизирующему излучению прямо пропорциональна размеру клеточного ядра, а точнее, объему хро­мосом или содержанию ДНК. Как показано на фиг. 224, при изме­нении объема хромосом их чувствительность к облучению изменяется почти на три порядка. Растения большим объемом хромосом гибнут при острой дозе ниже 1000 рад, тогда как растения с мелкими хромосо­мами или малым их количеством устойчивы к дозе 50000 рад или выше. Такая зависимость свидетельствует о том, что при увеличении хромосом­ной «мишени» повышается вероятность прямого «попадания» атомных «выстрелов».

У высших животных не обнаружено такой прямой зависимости меж­ду чувствительностью и клеточной структурой; для них более важное значение имеет чувствительность отдельных систем органов. Так, млеко­питающие плохо переносят даже низкие дозы вследствие высокой чув­ствительности к облучению быстро делящейся кроветворной ткани кост­ного мозга. Многие исследователи сообщают, что ЛД-50 (доза, при ко­торой гибнет 50% особей в популяции) для некоторых диких грызунов примерно вдвое выше, чем для лабораторных белых мышей или белых крыс, но удовлетворительного объяснения причин такого различия меж­ду близкородственными видами пока не найдено.

Дифференциальная чувствительность представляет значительный экологический интерес. Для того чтобы та или иная система могла пере­носить более высокий уровень излучения, чем тот, при котором она эво­люционировала, должна произойти адаптация, возможно сопровождаю­щаяся элиминацией чувствительных линий или видов, В разд. 3 этой главы приведены примеры уменьшения видового разнообразия и изме­нения в структуре сообщества, обусловленного радиацией. Радиацион­ный стресс может изменить основные межпопуляционные взаимодействия, например равновесие между хищниками и жертвами, как по­казала Ауэрбах (1958) в экспериментах с клещами, или вызвать внезапное нашествие вредителей.