Смекни!
smekni.com

Использование солнечной энергии (стр. 3 из 6)

Проекты электростанции, где турбину будет вращать пар, полу­ченный из нагретой солнечными лучами воды, разрабатывается сей­час в самых различных странах. В СССР экспериментальная солнеч­ная электростанция такого типа по­строена на солнечном побережье Крыма, вблизи Керчи. Место для станции выбрано не случайно— ведь в этом районе солнце светит почти две тысячи часов в год. Кро­ме того, немаловажно и то, что земли здесь солончаковые, не при­годные для сельского хозяйства, а станция занимает довольно боль­шую площадь.

Станция представляет собой не­обычное и впечатляющее соору­жение. На огромной, высотой более восьмидесяти метров, башне уста­новлен солнечный котел парогене­ратора. А вокруг башни на обшир­ной площадке радиусом более полукилометра концентрическими кругами располагаются гелиоста­ты —сложные сооружения, серд­цем каждого из которых является громадное зеркало, площадью бо­лее 25 квадратных метров. Очень непростую задачу пришлось решать проектировщикам станции — ведь все гелиостаты (а их очень мно­го — 1600!) нужно было располо­жить так, чтобы при любом положении солнца на небе ни один из них не оказался в тени, а отбра­сываемый каждым из них солнеч­ный зайчик попал бы точно в вер­шину башни, где расположен паро­вой котел (поэтому башня и сдела­на такой высокой). Каждый гелио­стат оснащен специальным устрой­ством для поворота зеркала. Зерка­ла должны двигаться непрерывно вслед за солнцем — ведь оно все время перемещается, значит, зай­чик может сместиться, не попасть на стенку котла, а это сразу же скажется на работе станции. Еще больше усложняет работу станции то, что траектории движения гелио­статов каждый день меняются: Зем­ля движется по орбите и Солнце ежедневно чуть-чуть меняет свой маршрут по небу. Поэтому управле­ние движением гелиостатов пору­чено электронно-вычислительной машине — только ее бездонная па­мять способна вместить в себя за­ранее рассчитанные траектории движения всех зеркал.

Строительство солнечной электростанции

Под действием сконцентриро­ванного гелиостатами солнечного тепла вода в парогенераторе нагре­вается до температуры 250 гра­дусов и превращается в пар вы­сокого давления. Пар приводит во вращение турбину, та — электро­генератор, и в энергетическую сис­тему Крыма вливается новый ру­чеек энергии, рожденной солнцем. Выработка энергии не прекратится, если солнце будет закрыто тучами, и даже ночью. На выручку придут тепловые аккумуляторы, установ­ленные у подножия башни. Излиш­ки горячей воды в солнечные дни направляются в специальные хра­нилища и будут использоваться в то время, когда солнца нет.

Мощность этой эксперименталь­ной электростанции относительно
невелика — всего 5 тысяч киловатт. Но вспомним: именно такой была мощность первой атомной электро­станции, родоначальницы могучей атомной энергетики. Да и выработ­ка энергии отнюдь не самая глав­ная задача первой солнечной эле­ктростанции — она потому и назы­вается экспериментальной, что с ее помощью ученым предстоит найти решения очень сложных задач эксплуатации таких станций. А та­ких задач возникает немало. Как, например, защитить зеркала от за­грязнения? Ведь на них оседает пыль, от дождей остаются потеки, а это сразу же снизит мощность станции. Оказалось даже, что не вся­кая вода годится для мытья зеркал. Пришлось изобрести специальный моечный агрегат, который следит за чистотой гелиостатов. На экспе­риментальной станции сдают экза­мен на работоспособность устрой­ства для концентрации солнечных лучей, их сложнейшее оборудова­ние. Но и самый длинный путь на­чинается с первого шага. Этот шаг на пути получения значительных количеств электроэнергии с по­мощью солнца и позволит сде­лать Крымская экспериментальная солнечная электростанция.

Советские специалисты готовят­ся сделать и следующий шаг. Спроектирована крупнейшая в мире солнечная электростанция мощ­ностью 320 тысяч киловатт. Место для нее выбрано в Узбекистане, в Каршинской степи, вблизи молодо­го целинного города Талимарджана. В этом краю солнце светит не ме­нее щедро, чем в Крыму. По прин­ципу действия эта станция не отли­чается от Крымской, но все ее сооружения значительно масштаб­нее. Котел будет располагаться на двухсотметровой высоте, а вокруг башни на много гектаров раскинет­ся гелиостатное поле. Блестящие зеркала (72 тысячи!), повинуясь сигналам ЭВМ, сконцентрируют на поверхности котла солнечные лучи, перегретый пар закрутит турбину, генератор даст ток 320 тысяч кило­ватт—это уже большая мощность, и длительное ненастье, препят­ствующее выработке энергии на солнечной электростанции, может существенно сказаться на потреби­телях. Поэтому в проекте станции предусмотрен и обычный паровой котел, использующий природный газ. Если пасмурная погода затянет­ся надолго, на турбину подадут пар из другого, обычного котла.

Разрабатывают солнечные эле­ктростанции такого же типа и в дру­гих странах. В США, в солнечной Калифорнии, построена первая электростанция башенного типа «Солар-1» мощностью 10 тысяч киловатт. В предгорьях Пиренеев французские специалисты ведут исследования на станции «Темис» мощностью 2,5 тысячи киловатт. Станцию «ГАСТ» мощностью 20 ты­сяч киловатт запроектировали за­падногерманские ученые.

Пока еще электрическая энер­гия, рожденная солнечными лу­чами, обходится намного дороже, чем получаемая традиционными способами. Ученые надеются, что эксперименты, которые они про­ведут на опытных установках и стан­циях, помогут решить не только технические, но и экономические проблемы.

Согласно расчетам, солнце должно помочь в решении не только энергетических проблем, но и задач, которые поставил перед специалистами наш атомный, кос­мический век. Чтобы построить могучие космические корабли, гро­мадные ядерные установки, создать электронные машины, совершаю­щие сотни миллионов операций в секунду, нужны новые
материа­лы — сверхтугоплавкие, сверхпроч­ные, сверхчистые. Получить их очень сложно. Традиционные ме­тоды металлургии для этого не годятся. Не подходят и более изо­щренные технологии, например плавка электронными пучками или токами сверхвысокой частоты. А вот чистое солнечное тепло может оказаться здесь надежным помощ­ником. Некоторые гелиостаты при испытаниях легко пробивают своим солнечным зайчиком толстый алю­миниевый лист. А если таких гелио­статов поставить несколько десят­ков? А затем лучи от них пустить на вогнутое зеркало концентратора? Солнечный зайчик такого зеркала сможет расплавить не только алюминий, но и почти все известные материалы. Специальная плавиль­ная печь, куда концентратор пере­даст всю собранную солнечную энергию, засветится ярче тысячи солнц.

Высокотемпературная печь с диаметром зеркала в три метра.

Солнце плавит металл в тигле

Проекты и достижения, о кото­рых мы рассказали, используют для получения энергии солнечное тепло, которое затем преобразует­ся в электричество. Но еще более заманчив другой путь — прямое преобразование солнечной энергии в электричество.

Впервые намек на связь электри­чества и света прозвучал в трудах великого шотландца Джеймса Клерка Максвелла. Эксперимен­тально эта связь была доказана в опытах Генриха Герца, который в 1886—1889 годах показал, что электромагнитные волны ведут себя точно так же, как и световые, — так же прямолинейно распространяют­ся, образуя тени. Ему удалось да­же сделать гигантскую призму из двух тонн асфальта, которая пре­ломляла электромагнитные волны, как стеклянная призма — световые.

Но еще десятью годами раньше Герц неожиданно для себя заме­тил, что разряд между двумя электродами, происходит гораздо легче, если эти электроды осве­тить ультрафиолетовым светом.

Эти опыты, не получившие раз­вития в работах Герца, заинтересо­вали профессора физики Москов­ского университета Александра Григорьевича Столетова. В феврале 1888 года он приступил к серии опытов, направленных на изучение таинственного явления. Решающий опыт, доказывающий наличие фото­эффекта — возникновение электри­ческого тока под воздействием света, —был проведен 26 февраля. В экспериментальной установке Столетова потек электрический ток, рожденный световыми лучами. Фактически заработал первый фотоэлемент, который впоследствии нашел многочисленные при­менения в самых разных областях техники.

В начале XX века Альберт Эйн­штейн создал теорию фотоэффек­та, и в руках исследователей по­явились, казалось бы, все инстру­менты для овладения этим источ­ником энергии. Были созданы фото­элементы на основе селена, потом более совершенные — таллиевые. Но они обладали очень малым ко­эффициентом полезного действия и нашли применение только в ус­тройствах управления, подобных привычным турникетам в метро, в которых луч света преграждает дорогу безбилетникам.

Следующий шаг был сделан, когда учеными были подробно изу­чены открытые еще в 70-х годах прошлого века фотоэлектрические свойства полупроводников. Оказа­лось, что полупроводники гораздо эффективнее металлов преобра­зуют солнечный свет в электри­ческую энергию.