Смекни!
smekni.com

Методы очистки промышленных газовых выбросов (стр. 3 из 5)

где и скорость дрейфа частиц к электроду; l — длина электро­да; r — радиус осадительного электрода; wг — скорость очищае­мого газа.


На рис.2 приведены идеальные кривые зависимости степени улавливания аэрозолей в электрофильтре от размеров частиц. Кривые на этом рисунке отвечают разным значениям произведения рЕЕО , где р коэффициент, для непроводящих частиц р = 1,5¸2, для проводящих частиц р=3; Е напряженность электрического поля; eОкритическое значение напряженности поля. Фактичес­кая зависимость степени улавливания аэрозолей hот диаметра частиц d для промышленных электрофильтров определяется экс­периментально. Очистка осложнена прилипанием частиц к электро­ду, аномальным (пониженным) сопротивлением слоя пыли на электродах и др.

При очистке от пыли сухих газов электрофильтры могут рабо­тать в широком диапазоне температур (от 20 до 500 °С) и дав­лений. Их гидравлическое сопротивление невелико – 100-150 Па. Степень очистки от аэрозолей – выше 90, достигая 99,9% на мно­гопольных электрофильтрах при d >1 мкм. Недостаток этого ме­тода – большие затраты средств на сооружение и содержание очистных установок и значительный расход энергии на создание электрического поля. Расход электроэнергии на электростатиче­скую очистку – 0,1-0,5 кВт на 1000 м3 очищаемого газа.

Звуковая и ультразвуковая коагуляция, а также предваритель­ная электризация пока мало применяются в промышленности и находятся в основном в стадии разработки. Они основаны на укрупнении аэрозольных частиц, облегчающем их улавливание традиционными методами. Аппаратура звуковой коагуляции со­стоит из генератора звука, коагуляционной камеры и осадителя. Звуковые и ультразвуковые методы применимы для агрегирова­ния мелкодисперсных аэрозольных частиц (тумана серной кисло­ты, сажи) перед их улавливанием другими методами. Начальная концентрация частиц аэрозоля для звуковой коагуляции должна быть не менее 2 г/м3 (для частиц d = l¸10 мкм).


Коагуляцию аэрозолей методом предварительной электриза­ции производят, например, пропусканием газа через электризационную камеру с коронирующими электродами, где происходит зарядка и коагуляция частиц, а затем через мокрый газоочисти­тель, в котором газожидкостный слой служит осадительным элек­тродом (рис. 3). Осадительным электродом может служить пенный слой в пенных аппаратах, слой газожидкостной эмульсии в насадочных скрубберах и других мокрых газопромывателях, в которых решетки или другие соответствующие детали должны быть заземлены.

Очистка газов от парообразных и газообразных примесей. Газы в промышленности обычно загрязнены вредны­ми примесями, поэтому очистка широко применяется на заводах и предприятиях для технологических и санитарных (экологических) целей. Промышленные способы очистки газовых выбросов от газо- и парообразных токсичных примесей можно разделить на три основные группы:

1) абсорбция жидкостями;

2) адсорбция твердыми поглотителями ;

3) каталитическая очистка.

В мень­ших масштабах применяются термические методы сжигания (или дожигания) горючих загрязнений, способ химического взаимодей­ствия примесей с сухими поглотителями и окисление примесей озоном.

Абсорбция жидкостями применяется в промышленно­сти для извлечения из газов диоксида серы, сероводорода и дру­гих сернистых соединений, оксидов азота, паров кислот (НСl, HF, H2SO4), диоксида и оксида углерода, разнообразных органических соединений (фенол, формальдегид, летучие растворители и др.).

Абсорбционные методы служат для технологической и сани­тарной очистки газов. Они основаны на избирательной раствори­мости газо- и парообразных примесей в жидкости (физическая абсорбция) или на избирательном извлечении примесей химичес­кими реакциями с активным компонентом поглотителя (хемосорбция). Абсорбционная очистка –непрерывный и, как правило, циклический процесс, так как поглощение примесей обычно сопро­вождается регенерацией поглотительного раствора и его возвра­щением в начале цикла очистки. При физической абсорбции (и в некоторых хемосорбционных процессах) регенерацию абсорбента проводят нагреванием и снижением давления, в результате чего происходит десорбция поглощенной газовой примеси и ее концен­трированно (рис.4).

Некоторые формулы для расчета абсорбционных и хемосорб­ционных процессов приведены в гл. 4. Показатели абсорбционной очистки: степень очистки (КПД) и коэффициент массопередачи k зависят от растворимости газа в абсорбенте, технологического ре­жима в реакторе (w, Т, р) и от других факторов, например от равновесия и скорости химических реакций при хемосорбции. В хемосорбционных процессах, где в жидкой фазе происходят химические реакции, коэффициент массопередачи увеличивается по сравнению с физической абсорбцией. Большинство хемосорбционных процессов газоочистки обратимы, т. е. при повышении температуры поглотительного раствора химические соединения, образовавшиеся при хемосорбции, разлагаются с регенерацией активных компонентов поглотительного раствора и с десорбцией поглощенной из газа примеси. Этот прием положен в основу реге­нерации хемосорбентов в циклических системах газоочистки. Хемосорбция в особенности применима для тонкой очистки газов при сравнительно небольшой начальной концентрации примесей.



Абсорбенты, применяемые в промышленности, оцениваются по следующим показателям: 1) абсорбционная емкость, т. е. раство­римость извлекаемого компонента в поглотителе в зависимости от температуры и давления; 2) селективность, характеризуемая соот­ношением растворимостей разделяемых газов и скоростей их аб­сорбции; 3) минимальное давление паров во избежание загрязне­ния очищаемого газа парами абсорбента; 4) дешевизна; 5) отсут­ствие коррозирующего действия на аппаратуру. В качестве абсор­бентов применяют воду, растворы аммиака, едких и карбонатных щелочей, солей марганца, этаноламины, масла, суспензии гидроксида кальция, оксидов марганца и магния, сульфат магния и др.

Очистная аппаратура аналогична уже рассмотренной аппара­туре мокрого улавливания аэрозолей. Наиболее распространен насадочный скруббер, применяемый для очистки газов от диокси­да серы, сероводорода, хлороводорода, хлора, оксида и диоксида углерода, фенолов и т. д. В насадочных скрубберах скорость массообменных процессов мала из-за малоинтенсивного гидродинамического режима этих реакторов, работающих при скорости газа wг = 0,02¸0,7 м/с. Объемы аппаратов поэтому велики и установки громоздки.

Для очистки выбросов от газообразных и парообразных при­месей применяют и интенсивную массообменную аппаратуру — пенные аппараты, безнасадочный форсуночный абсорбер, скруб­бер Вентури, работающие при более высоких скоростях газа. Пен­ные абсорберы работают при wг = 1¸4 м/с и обеспечивают срав­нительно высокую скорость абсорбционно-десорбционных процес­сов; их габариты в несколько раз меньше, чем насадочных скруб­беров. При достаточном числе ступеней очистки (многополочный пенный аппарат) достигаются высокие показатели глубины очист­ки: для некоторых процессов до 99,9%. Особенно перспективны для очистки газов от аэрозолей и вредных газообразных приме­сей пенные аппараты со стабилизатором пенного слоя. Они срав­нительно просты по конструкции и работают в режиме высокой турбулентности при линейной скорости газа до 4-5 м/с.


Примером безотходной абсорбционно-десорбционной цикличе­ской схемы может служить поглощение диоксида углерода из от­ходящих газов растворами моноэтаноламина с последующей реге­нерацией поглотителя при десорбции СОа. На рис.5 приведе­на схема абсорции СО2 в пенных абсорберах; десорбция СО2 про­водится также при пенном режиме. Установка безотходна, так как чистый диоксид углерода после сжижения передается потре­бителю в виде товарного продукта.

Абсорбционные методы характеризуются непрерывностью и универсальностью процесса, экономичностью и возможностью из­влечения больших количеств примесей из газов. Недостаток этого метода в том, что насадочные скрубберы, барботажные и даже пенные аппараты обеспечивают достаточно высокую степень из­влечения вредных примесей (до ПДК) и полную регенерацию поглотителей только при большом числе ступеней очистки. Поэто­му технологические схемы мокрой очистки, как правило, сложны, многоступенчаты и очистные реакторы (особенно скрубберы) име­ют большие объемы.

Любой процесс мокрой абсорбционной очистки выхлопных га­зов от газо- и парообразных примесей целесообразен только в случае его цикличности и безотходности. Но и циклические сис­темы мокрой очистки конкурентоспособны только тогда, когда они совмещены с пылеочисткой и охлаждением газа.

Адсорбционные методы применяют для различных технологических целей — разделение парогазовых смесей на ком­поненты с выделением фракций, осушка газов и для санитарной очистки газовых выхлопов. В последнее время адсорбционные ме­тоды выходят на первый план как надежное средство защиты атмосферы от токсичных газообразных веществ, обеспечивающее возможность концентрирования и утилизации этих веществ.