Смекни!
smekni.com

Серная кислота и экология биосферы (стр. 2 из 2)

5. Диоксид серы SO2

Диоксид серы SO2 составляет более 95% всех техногенных выбросов серосодержащих веществ в атмосферу. По ряду данных, планетарный выброс SO2 составляет около 110,4 млн. т (без учета нефтепереработки и выплавки металлов). С учетом этих отраслей экономики американские ученые считают мировой выброс SO2 равным около 174 млн. т. Около 96% мирового выброса приходится на северное полушарие. Сравнительно большая доля стран Восточной и Западной Европы по этим видам загрязнения атмосферы объясняется высоким уровнем использования бурого угля в энергопроизводстве. Есть основания полагать, что ежегодные выбросы SO2 в атмосферу будут возрастать в связи с ростом потребления топлива.

Присутствие оксидов серы в атмосфере оказывает негативное влияние на жизнедеятельность животных и растений: диоксид серы взаимодействует с кислородом воздуха с образованием SO3 и в конечном счете H2SO4:

2SO2+ O2 = 2SO3

SO3+ H2O =H2SO4

Наиболее благоприятные условия протекания этой реакции находятся в пределах озонового слоя атмосферы, где в процессе распада молекул озона на O и О2 генерируется атомный кислород. В результате в стратосфере на высоте порядка 18 км присутствует слой высокой концентрации SO3.

Анализ данных о круговороте серы в окружающей среде показывает, что выброс техногенного диоксида серы составляет 30% от ее общего поступления в атмосферу.

Установлено, что в индустриальных регионах до 60% почвенной кислотности определяется образованием в атмосфере серной кислоты

6. Круговорот серы в биосфере.

Сера в значительном количестве присутствует в океане в окисленном виде в составе сульфат-иона

Серобактерии в океане, почве и болотах восстанавливают ее из окисленного состояния и выделяют в атмосферу газообразный сероводород. Сероводород сравнительно быстро, за время порядка нескольких минут или десятков минут, окисляется в воздухе с образованием сернистого газа SO2. Дополнительными природными источниками сероводорода и сернистого газа являются вулканы, горячие источники и гейзеры. Сернистый газ хорошо растворяется в облачной воде с образованием сернистой кислоты H2SO3, которая в свою очередь быстро окисляется и превращается в серную кислоту. Поэтому, попав в облака, где всегда присутствует аммиак, щелочные или щелочноземельные металлы, сера быстро переходит снова в сульфатную форму и вместе с дождем или снегом выпадает из облаков на землю.

Рис.3 Потоки серы в биосфере

При высыхании обычных капель и брызг, образующихся при осушении морских волн, в атмосфере остаются сульфатные частицы с размерами 0,01-10 микрометров. Эти частицы практически невесомы и могут реять в воздухе очень долго, переносимые ветрами на огромные расстояния. Рано или поздно они вымываются осадками и высаждаются на землю, будучи вынесены к ее поверхности турбулентными потоками воздуха. Такая же судьба постигает и молекулы сернистого газа, не успевшие превратится в сульфаты. Попав на поверхность, сернистый газ реагирует с ее материалом и также превращается в сульфаты. Органическое топливо – уголь и нефть – содержит много, от 0,5 до 5%, серы. Поэтому при его переработке и сжигании в атмосферу выбрасываются огромные объемы сернистого газа, концентрации которого во многих регионах многократно превосходят естественный уровень, что вызывает закисление дождей, почв и водоемов с тяжелыми последствиями для многих биогеоценозов.

7. Очистка газов от SO2

Диоксид серы SO2 оказывает сильное токсическое действие уже при концентрации в воздухе 0,25 – 0,50 мг/м3, а при средней концентрации более 0,50г/м3 отмечается повышение смертности и числа госпитализаций. В нашей стране на SO2 установлены следующие предельно допустимые концентрации: ПДКр.з. – 10мг/м3, ПДКм.р. – 0,3мг/м3, ПДКс.с. – 0,005 мг/м3.

ПДКр.з. – предельно допустимая концентрация рабочей зоны;

ПДКм.р. – максимально – разовая;

ПДКс.с. – среднесуточная.

Используемые в промышленных масштабах методы очистки отходящих газов от SO2 можно разделить на три основные группы:

1) аммиачные методы, позволяющие получать сульфит и гидросульфит аммония, которые используются как товарные продукты.

2) Методы нейтрализации, обеспечивающие высокую степень очистки газов, но дающие в качестве побочных продуктов сульфиты и сульфаты, не имеющие широкого спроса в народном хозяйстве.

3) Методы каталитического окисления SO2 до SO3 с последующим получением разбавленной серной кислоты.

8. Контроль атмосферы в Челябинске

Наблюдения за загрязнением атмосферного воздуха в г. Челябинске проводится на 8 стационарных постах, расположенных в различных районах города:

- пост №16 – ул. Новороссийская, Ленинский район;

- пост №17 – ул. Румянцева, Металлургический район;

- пост №18 – ул. Захаренко, Курчатовский район;

- пост №20 – ул. Горького, Калининский район;

- пост №22 – ул. Трудовая, Металлургический район;

- пост №23 – пр. Победы, Курчатовский район;

- пост №27 – ул. Российская, Калининский район;

- пост №18 – ул. Сони Кривой, Центральный район.

Рис. 4 Схема расположения постов наблюдения

Отбор атмосферного воздуха проводился на 24 загрязняющих вещества. На всех постах производятся отборы проб на пыль, диоксид серы, оксид углерода, диоксид азота, формальдегид, фенол, тяжелые металлы (железо, кадмий, марганец, медь, никель, свинец, хром, цинк). Контроль атмосферы г. Челябинска показывает, что воздух незначительно загрязнен диоксидами серы. Среднегодовые концентрации SO2 не превышают допустимую норму. Максимальные из разовых концентрации SO2 также не превышают ПДК.

Литература

1. Гальперин М.В. Экологические основы природопользования. – М.:Форум – ИНФРА-М, 2002.

2. Лозановская И.Н., Орлов Д.С., Садовникова Л.К. Экология и охрана биосферы при химическом загрязнении. – М.:Высшая школа, 1998.

3. Малышкина В. Занимательная химия. – Санкт-Петербург, 1998.

4. Хомченко И.Г. Общая химия. – М. Новая Волна, 2002.

5. Комплексный доклад "Гидрометеорология и мониторинг окружающей среды – на службе области" – Челябинский областной центр по гидрометеорологии и мониторингу окружающей среды.