Смекни!
smekni.com

Совместное действие температуры и влажности. Экологические системы, биоценоз, биоциклы (стр. 4 из 6)

Табл. 2.— Содержание углерода

на поверхности 3 е м л и и в земной коре (16 км мощности).

Огромное кол-во угольной к-ты законсервировано в виде ископае­мых известняков и др. пород. Между углекислым газом атмосферы и водой океана, в свою очередь, существует подвижное равновесие.

Многие водные организмы поглощают углекислый кальций, создают свои ске­леты, а затем из них образуются пласты известняков. Из атмосферы было извле­чено и захоронено в десятки тысяч раз больше углекислого газа, чем в ней нахо­дится в данный момент. Атмосфера по­полняется углекислым газом благодаря процессам разложения органических вещества, карбонатов и др., а также, всё в большей мере, в результате индустриальной дея­тельности человека. Особенно мощным источником являются вулканы, газы которых состоят главным образом из углекислого га­за и паров воды. Некоторая часть углекис­лого газа и воды, извергаемых вулка­нами, возрождается из осадочных пород, в частности известняков, при контакте магмы с ними и их ассимиляции магмой. В процессе круговорота углерода про­исходит неоднократное фракционирова­ние его по изотопному составу (12С — 13С), особенно в магматогенном процессе (образование СО2, алмазов, карбонатов), при биогенном образовании органические вещества (угля, нефти, тканей организ­мов и др.).

4.1.4. Круговорот азота

Источником азота на Земле был вулканогенный NH3, окисленный О2 (про­цесс окисления азота сопровождается на­рушением его изотопного состава—UN — 15N). Основная масса азота на поверх­ности Земли находится в виде газа (N2) в атмосфере. Известны два пути его во­влечения в биогенный круговорот (рис. 4.3):

Рис. 4.3. Схема круговорота азота.

1) процессы электрического (в тихом раз­ряде) и фотохимического окисления азота воздуха, дающие разные окислы азота (NO2, NO3 и др.), которые растворяются в дождевой воде и вносятся т. о. в почвы, воду океана; 2) биологич. фиксация N2 клубеньковыми бактериями, свободными азотфиксаторами и др. микроорганизмами. Первый путь даёт около 30 мг NО3 на 1 м2 поверхности Земли в год, второй—около 100 мг NO3 на 1 м2 в год. Значение азота в обмене ве­ществ организмов общеизвестно. Он вхо­дит в состав белков и их разнообразных производных. Остатки организмов на поверхности Земли или погребённые в толще пород подвергаются разрушению при участии многочисленных микроорганизмов. В этих процессах органический азот под­вергается различным превращениям. В результате процесса денитрификации при участии бактерий образуется элемен­тарный азот, возвращающийся непосред­ственно в атмосферу. Так, например, наблю­даются подземные газовые струи, состоя­щие почти из чистого N2. Биогенный ха­рактер этих струй доказывается отсутст­вием в их составе аргона (40Ar), обычного в атмосфере. При разложении белков образуются также аммиак и его произ­водные, попадающие затем в воздух и в воду океана. В биосфере в результате нитрификации — окисления аммиака и др. азотсодержащих органич. Соединений при участии Nitrosomonas и нитробактерий – образуются различные окислы азота.

4.1.5. Круговорот кислорода.

В круговороте кислорода отчетливо выражены активная геохимическая деятельность живого вещества, его первостепенная роль в этом процессе. Биологический цикл кислорода является планетарным процессом, который связывает атмосферу и гидросферу с земной корой. Ключевые звенья этого круговорота: образование свободного кислорода при фотосинтезе в зеленых растениях, потребление его для осуществления дыхательных функций всеми живыми организмами, для реакций окисления органических остатков и неорганических веществ (например: сжигания топлива) и другие химические преобразования, ведущие к образованию таких окисленных соединений как диоксид углерода и вода, и последующему вовлечению их в новый цикл фотосинтетических превращений.

Если исходить из массы кислорода, синтезируемого протяжении года (с учетом потраченных на процесс дыхания 15%), то можно считать, что ежегодно зеленая растительность нашей планет продуцирует примерно 300-109 т кислорода. Около 75% этого количества выделяется растительнос­тью суши и немногим более 25 % — фотосинтезирующими организмами Ми­рового океана (В. В. Добровольский, 1980).

Расчет полного прохождения через всю систему круговорота всего атмос­ферного кислорода можно представить так. Масса атмосферы равна 5,2-1015т, на долю кислорода приходится 23,3 % этого количества. Следовательно, в га­зовой оболочке Земли содержится око­ло 1,2-1015т кислорода. В процессе фо­тосинтеза растения ежегодно выделяют примерно 300 млрд т этого газа. Таким образом, за 4 тыс. лет фотосинтетичес­кие организмы могли бы «выработать» существующее количество кислорода (К. М. Сытникидр., 1987).

В растворенном состоянии свобод­ный кислород содержится и в природ­ных водах. По данным А. П. Виногра­дова, суммарный объем вод Мирового океана равен 137-1019л. В 1 л воды ра­створено от 2 до 8 см3 кислорода. Не­трудно подсчитать, что в водах Миро­вого океана находится (2,7...10,9)11012т растворенного кислорода.

Нельзя, разумеется, упускать из виду, что часть органического вещества захороняется, вследствие чего из годич­ного круговорота выводится связанный кислород.

А. М. Алпатьев (1983) дает следую­щую количественную оценку годичного круговорота кислорода на суше и в оке­ане (млрд т):

Поступление в процессе фотосинтеза на суше 160

Поступление в процессе фотосинтеза в океане 80

Биохимические потребления в океане 78

Связывается в древесных насаждениях 27

Расход на биологическое окисление 82

» » гетеротрофное дыхание на суше 20

» » технологические процессы 20

» » процессы выветривания 6

» » усиление окислительных процессов на 7

обрабатываемых землях

Захоронение с органическим веществом 1,5

Следует также учитывать использо­вание кислорода для процесса горения и других видов антропогенной деятель­ности. Предполагается, что в обозримой перспективе ежегодное суммарное по­требление кислорода достигнет 210...230 млрд т. Между тем ежегодное продуцирование этого газа всей фитосферой составляет 240 млрд.т.

Рис. 4.4. Упрошенная схема некоторых путей круговорота кислорода на Земле (Клауд, Джибор, 1972)

5. Природные ресурсы и их классификации. Факторы определяющие масштабы их потребления.

ПРИРОДНЫЕ РЕСУРСЫ, естест­венные ресурсы, часть всей совокупности природных условий су­ществования человечества и важнейшие компоненты окружающей его естеств. среды, используемые в процессе обще­ственного производства для целей удов­летворения материальных и культурных потребностей общества.

В свете научно-технической революции во­просы, связанные с природными ресурсами, выдвинулись в число самых насущных вопросов совре­менности. В связи с бурным развитием производительных сил, ведущим к погло­щению огромных количеств природного сырья, проблемы обеспеченности основ­ными его видами приобрели особую ак­туальность. Поскольку успешная борьба с загрязнением почвы, атмосферы и гид­росферы, оказывающим крайне отри­цательное влияние на сохранность природных ресурсов, требует согласованных действий ряда стран, проблемы защиты природных ресурсов носят гло­бальный характер. Энергетический кризис, раз­разившийся в капиталистическом мире в 70-х гг. 20 в., показал, что глубинные при­чины его лежат не столько в природных, сколько в политических и социальных факто­рах. Этот кризис не ограничился сферой энергетики, а в той или иной мере отра­зился на мн. отраслях хозяйственной деятслыюсти каппталистического мира.

Классификация природ­ных ресурсов и их значение с. Главные виды природных ресурсов — солнечная энер­гия, энергия приливов и отливов, внутриземное тепло, водные, земельные, мине­ральные (в т. ч. топливно-энергетиче­ские), растительные, ресурсы животного мира.

Помимо выделения природных ресурсов по принад­лежности к тем или иным компонентам природы, деления природных ресурсов на практически неисчерпаемые и исчерпаемые (которые, в свою очередь, подразделяются на возобновляемые и невозобновляемые), природные ресурсы классифицируются также по характеру их использования в материальном произ­водстве (в области энергетики, промыш­ленности, сельского хозяйства и др. от­раслей хозяйства) и в непроизводствен­ной сфере (напр., оздоровительные), а также и по признаку одно- и многоцеле­вого использования.

Подготовленные к использованию и вовлекаемые в хозяйственный оборот природных ресурсов, превра­щаются в важный компонент обществ, производит, сил. Выявленные и ныне не используемые, но могущие быть ис­пользованными в будущем, при измене­нии условий техники и экономики, природные ресурсы. рассматриваются как потенциальные.

Важными этапами освоения природных ресурсов яв­ляются их выявление (разведка), изуче­ние, составление кадастров по отдельным видам (земельный кадастр, водный ка­дастр, таксация лесов и др.) и в терри­ториальном разрезе (природные ресурсы Земли в це­лом, суши, Мирового океана и его час­тей, крупных природных районов, от­дельных стран и др.). По современным представлениям, об­щее количество солнечной энергии, еже­годно получаемое Землёй, составляет примерно 5*1020 ккал, масса атмосферы Земли ок. 5,15*1015 т (из них 23% ки­слорода в свободном состоянии), ресурсы гидросферы почти 1,5 млрд. кл13, в т. ч. пресной воды в речных руслах 1,2 тыс.км3, ежегодная первичная продукция фито-массы в пересчёте на сухое органич. ве­щество, по различным данным, от 50 до 100 млрд. т (некоторыми авторами оце­ниваются до 350 млрд. т), общегеологич. запасы угля 10 —12 триллионов т, железных руд примерно 350 млрд. т, потенциальные запасы природного газа 130—140 триллионов м3.Распределение природных ресурсов характеризуется большой неравно­мерностью, что служит естественной ос­новой для развития территориального разделения тру­да. В условиях капиталистической экономики неравномерность порождает глубокие со­циальные противоречия между странами и районами. Примером неравномерности к размещении ресурсов может служить распределение запасов нефти; так, из общей суммы разведанных в капитали­стических развивающихся странах запасов нефти на начало 1974 (71,3 млрд. т) приходится на Ближний и Средний Вос­ток 67%, Африку 12,5%, Юго-Вост. Азию и Дальний Восток 3% , Сев. Америку 9%, Центр, и Юж. Америку 5,5%, Зап. Ев­ропу 3%. Между тем подавляющая часть нефти потребляется в Сев. Америке (прежде всего в США), в индустриаль­но развитых капиталистических странах Западной Европы и в Японии.