Таким образом, промышленные отвалы, образованные при карьерном способе добычи полезных ископаемых, представляют собой особые техногенные территории, промышленные пустыни, первоначально практически полностью лишенные семенных зачатков, очень сильно каменистые, с повышенным содержанием микроэлементов (в том числе тяжелых металлов). Каждое месторождение характеризуется своим набором геохимических спутников добываемого полезного ископаемого.
Добыча полезных ископаемых на Урале имеет давнюю историю, начиная с XVIII века и по настоящее время. В связи с этим на Урале имеется много нарушенных земель, которые со временем осваиваются живыми организмами, формируя новый почвенный покров. Самозарастающие отвалы разного возраста позволяют изучать закономерности и особенности естественного восстановления растительного и почвенного покровов, динамику биогеоценозов, особенности химического состава растений, что представляет и практический интерес, так как самозарастающие отвалы повсеместно стихийно используются как пастбища, сенокосные угодья и в меньшей мере - под огороды и коллективные сады. Сотрудниками кафедры экологии УрГУ, начиная с 70-х годов и по настоящее время, ведутся работы по оценке пригодности горных пород в отвалах для биологической рекультивации, изучаются закономерности восстановления и развития фитоценозов и начальных стадий почвообразования.
Обследованы самозарастающие разновозрастные отвалы, образованные при добыче железа, никеля, золота, меди, угля, асбеста, песков, огнеупорных глин, расположенные в таежно-лесной, лесостепной и степной зонах Урала.
Материалы по изучению формирования фитоценозов на нарушенных промышленностью землях Урала обобщены в монографии Т. С. Чибрик и Ю. А. Елькина [1991], по химическому составу травянистых растений в монографии Г. И. Махониной [1987]. Показано, что травянистые растения, выросшие на отвалах разных месторождений, отличаются от фоновых пониженным содержанием ряда макроэлементов (фосфора, калия и др.), так как этих элементов в доступных для растений формах очень мало и повышенным - микроэлементов (тяжелых металлов). В табл. 1 приведено среднее содержание тех микроэлементов в растительном покрове разных месторождений Урала, для которых разработаны пороговые концентрации. К сожалению, они неизвестны для никеля, хрома, ванадия, титана, хотя этих элементов много у растений с никелевых месторождений, некоторых железорудных, угольных, асбестовых.
Таблица 1
Среднее содержание микроэлементов в растительном покрове отвалов разных месторождений Урала, мг/кг сухого вещества | |||||||
Месторождение | Co | Mn | Cu | Zn | Mo | Pb | B |
Железорудные | |||||||
Первое Северное | 12,19 | 129,09 | 14,89 | 73,25 | не опр. | 35,37 | не опр. |
Высокогорское | 30,76 | 291,04 | не опр. | не опр. | 6,48 | 7,98 | 111,47 |
Естюнинское | 18,72 | 126,62 | 81,19 | 52,75 | не опр. | 37,32 | не опр. |
Первоуральское | 7,79 | 86,47 | не опр. | не опр. | не опр. | 203,62 | 73,1 |
Магнитогорское | 8,23 | 61,56 | 11,36 | 38,84 | не опр. | 24,49 | не опр. |
Аккермановское | 10,22 | 136,73 | не опр. | не опр. | 2,02 | 2,7 | 51,6 |
Новокиевское | 5,2 | 61,07 | не опр. | не опр. | 2,85 | 5,48 | 136,5 |
Никелевые | |||||||
Липовское | 22,49 | 130,92 | 24,37 | 30,77 | 21,84 | не опр. | не опр. |
Верхне-Уфалейское | 46,25 | 115,77 | 22,26 | 42,48 | не опр. | 56,44 | не опр. |
Кемпирсайское | 50,55 | 330,6 | 21,14 | 40,56 | не опр. | 42,17 | не опр. |
Медные | |||||||
Пермское | 9,88 | 355,73 | 23,41 | не опр. | 4,11 | 23,06 | не опр. |
Угольные | |||||||
Буланашское | 6,32 | 47,11 | 31,33 | 18,26 | не опр. | не опр. | 45,36 |
Веселовско-Богословское | 4,58 | 115,94 | 12,54 | 23,41 | не опр. | не опр. | 30,08 |
Кизеловский бассейн | 1,14 | 27,23 | 10,29 | 3,16 | 0,77 | 0,46 | не опр. |
Челябинский бассейн | 5,93 | 118,33 | 25,12 | 21,61 | не опр. | не опр. | 42,63 |
Асбестовое | |||||||
Баженовское | 74,17 | 74,17 | не опр. | не опр. | 1,59 | 5,6 | 158,62 |
Огнеупорных глин | |||||||
Троицко-Байновское | 6,79 | 62,84 | не опр. | не опр. | 2,82 | 2,93 | не опр. |
Месторождения песка | |||||||
Басьяновское | 40,84 | 188 | не опр. | не опр. | 3,4 | не опр. | не опр. |
Камышловское | 12,07 | 134,3 | не опр. | не опр. | 2,21 | не опр. | не опр. |
Сравнение с пороговыми величинами показало, что на отвалах всех обследованных месторождений (кроме Кизеловского угольного) в растениях повышено содержание кобальта - выше верхней пороговой нормы (1 мг/кг сухого вещества) в 4-50 раз. На многих отвалах (месторождений Первого Северного, Высокогорского, Естюнинского, Первоуральского, Аккермановского, Веселовского, Челябинского бассейна, песчаных, медных) в растениях в 2-6 раз превышено содержание марганца. Избыточное содержание меди в растениях (свыше 20 мг/кг сухого веса) найдено на Буланашском угольном, Естюнинском и Высокогорском железорудных месторождениях. На отвалах многих месторождений в растениях в 2-20 раз превышено содержание свинца.
В целом наименьшее содержание многих микроэлементов (хотя и превышающее средние величины) найдено в растениях на отвалах Баженовского месторождения асбеста (кроме никеля, хрома, бора), месторождений песка, огнеупорных глин, угля. Наиболее высокие концентрации некоторых микроэлементов (никеля, бора, хрома) в растениях отмечаются на отвалах никелевых месторождений, железорудных и асбеста. Таким образом, химический состав травянистых растений (изучено 103 вида растений) с промышленных отвалов отражает особенности химизма пород в отвалах и свидетельствует об экологической опасности непосредственного использования таких растений в пищу животным и человеком. Поэтому не следует отводить отвалы под личные огороды и коллективные сады.
Грамотное использование отвалов в качестве кормовых трав животным возможно при смешивании их с другими кормами, содержащими пониженные количества соответствующих элементов. Рациональным использованием растительной продукции с таких отвалов можно считать выращивание растений, не используемых в пищу (технические культуры). Учитывая сильную каменистость пород в отвалах и особенности химического состава растений, лучше отводить такие земли в лесное хозяйство, тем более что в таежно-лесной зоне на них происходит естественное восстановление лесных культур.
Самозарастающие разновозрастные отвалы позволяют изучать и начальные стадии почвообразования. Появляющиеся на отвалах живые организмы (микроорганизмы, растения, животные) изменяют верхние слои пород отвалов и наряду с воздействием климата формируют первичные, молодые почвы. От зрелых фоновых почв они отличаются по многим показателям. Визуально у них не выражены или слабо выражены почвенные горизонты. Формирующиеся гумусовые горизонты имеют небольшую мощность. Даже у 200-летних почв мощность их не превышает 10 см. Аналитические методы фиксируют гумусовые вещества в небольшом количестве и на больших глубинах (до 20-43 см). Аналогичные особенности наблюдаются и у других показателей, т. е. в пределах первых 200 лет почвенный покров проходит стадию внутреннего развития почвенного профиля, стадию онтогенеза. Поэтому такие почвы предлагают называть эмбриоземами [Гаджиев, Курачев, Рагим-заде и др., 1992]. В общем виде можно считать, что эмбриоземы представляют собой начальную стадию развития существующих зрелых фоновых почв. Эта стадия характеризуется не только меньшим количественным содержанием гумуса, азота и других элементов плодородия, но и значительной изменчивостью всех свойств, связанной с мозаичным распределением растений, в свою очередь зависящим от высоты отвалов (возможна затрудненность заноса семенных зачатков), смены физических и химических свойств пород в отвалах на небольшом расстоянии, различий в микрорельефе (в микропонижениях зарастание идет быстрее в силу большей влажности и большего содержания мелкозема), особенностей окружающей среды.
В дальнейшем пестроте химических свойств эмбриоземов способствуют качественный состав опада, скорость его минерализации и гумификации и характер распределения по поверхности отвалов. На сильно каменистых отвалах сплошность почвенного покрова часто прерывается выходами на дневную поверхность крупных глыб плотных пород. Выявлены как количественные, так и качественные особенности в накоплении гумуса. Больше его накапливается под злаками и бобовыми видами и меньше - под разнотравьем. Под лиственными древесными породами гумуса образуется больше, чем под хвойными, при этом непосредственно у ствола дерева его больше, чем у края проекции крон, что связано с особенностями распределения массы опада.
На процессы гумусонакопления оказывает влияние и гранулометрический состав пород. С увеличением доли илистых частиц в почвах возрастает и содержание гумуса. Влияние химического состава пород в отвалах проявляется в наибольшем накоплении гумуса (при прочих равных условиях) на породах, обогащенных кальцием, и наименьшим - на породах, обогащенных кремнием. С возрастом (до 200 лет) содержание гумуса в почвах увеличивается. Так, в слое 0-20 см в подзоне южной тайги при увеличении возраста почв в ряду 5-10-30-50-80-100-200 лет запасы углерода органического возрастают соответственно возрасту следующим образом: 2,3-3,1-6,1-15,1-19,6-24,5-24 т/га. В разных почвах южной тайги, по данным В. П. Фирсовой и М. И. Дергачевой [1972], они колеблются в пределах 40-130 т/га. Следовательно, даже через 200 лет запасы новообразованного гумуса еще не достигли зональных значений.