3.5 Кольцевые окислительные блоки (рис. 3.5, 3.6, 3.7 ,3.8)
Кольцевые окислительные блоки – крупные сблокированные сооружения, в центре располагается вторичный отстойник вертикального типа, а вокруг него коаксиально расположена аэрационная камера. Все установки выполнены из железобетона – днище монолитное а стенки из сборных элементов. Производительность этих устройств в зависимости от размеров находится от 100 до 700 м3/сут очищаемой сточной воды.
Сточные воды проходят решётку и песколовку а затем направляются в аэрационную камеру, где аэрируются в смеси с активным илом. Концентрация активного ила в нормально работающей установке составляет 2-4 г/л. Затем смесь поступает через центральную трубу в нижнюю часть отстойной зоны вторичного отстойника. Двигаясь вертикально вверх, биологически очищенная сточная жидкость осветляется и отводится из установки через переливные лотки. Осевший активный ил сползает на коническое днище отстойника откуда перекачивается вертикальным канализационным насосом обратно в аэрационную камеру.
Указанные на рисунке 3.7 , 3.8, очистные станции с аэроокислителями следует применять для полной биохимической очистки неотстоенных сточных вод с содержанием взвешенных веществ от 300 мг/л и БПКП до 1500 мг/л с расходом 400 - 2100 м3 /сут на 1 сооружение.
Глава 4
Расчёт поверхностного стока и объёма коммунально – бытовых вод с территории посёлка Вишняковские дачи.
Расчетный расход направляемых на очистку дождевых сточных вод с учётом регулирования стока с территории водосбора определяется по формуле:
, л/с
где g20 – интенсивность дождя для данной местности, продолжительностью
20 мин. Для периода однократного превышения Р=1 год, л/с*га
(для условий г. Москвы и московской области g20=80 л/c);
n – параметр, зависящий от географического положения объекта (для
условий г. Москвы и Московской области n=0,65);
F - площадь водосборного бассейна, га;
φД - средний коэффициент стока дренажных вод ( определяется как
средневзвешенная величина в зависимости от постоянных значений
коэффициента стока Р разного рода поверхностей и их площади);
t - продолжительность протекания дождевых вод от крайней
границы бассейна до расчётного участка при выпадении дождя с
выбранным значением Р, мин.;
τ - параметр, зависящий от географического параметра С,
характеризующего вероятность интенсивности осадков (τ = 0,2);
Структура площади водосборного бассейна F составляет 44,0 га из них
Площадь застройки FКР составляет - 14 га
Площадь автодорог FД составляет - 7 га
Площадь грунтовых поверхностей FГР - 6,2 га
Площадь травяного покрова FГ - 16,8 га
Средний коэффициент стока дождевых вод вычисляется по формуле:
УД = [УТВ∙(FД + FКР) + УГР ∙ Fгр + УГ ∙ FГ]/F = [0,6∙(7 + 14) +0,2∙6,2 + 0,1∙16,8]/44 = 0,352
Расчётные расходы талых вод
Расход талых вод определяется по слою стока за часы снеготаяния в течение суток по следующей формуле:
где t – продолжительность протекания талых вод до расчётного створа, ч
(t=0,29);
hТ – слой стока талых вод за 10 дневных часов, мм
F – площадь водосбора, га
k– коэффициент, учитывающий частичный вывоз и окучивание снега,
(k=0,5)
QТ = [5,5/(10 + 0,29)] ∙ 20 ∙ 0,5 ∙ 44 = 844 м3/чГодовые объёмы стоков
Годовой объём жидких и смешанных осадков (в том числе, дождя) определяется по формуле:
WД = 10 ∙ hД ∙ F ∙ φД, м3/год,
где hД – годовое количество жидких и смешанных осадков, мм (для условий г. Москвы и Московской области hД = 528 мм);
WД = 10 ∙ 528 ∙ 44 ∙ 0,352 = 86301 м3/год,
Объём талых вод, поступающих в ливневую канализацию в период весеннего паводка, определяется по формуле:
WТ = 10 ∙ hТ ∙ F ∙ φТ, м3/год,
где hТ – годовое количество твёрдых осадков, остающихся на
поверхности водосбора к моменту наступления весеннего
паводка, мм
hТ = h - hД
где h - количество осадков за год, мм (для условий г. Москвы и
Московской области h = 704 мм);
φТ - коэффициент стока, принимается равным 0,5.
WТ = 10 ∙ (704 – 528) ∙ 44 ∙ 0,5= 38588 м3/год,
Суммарный годовой объём поверхностного стока
W = WД + WТ = 86301 + 38588 = 124889,4 м3/сут
Годовой объём коммунально – бытовых вод от посёлка:
WКБ = 100л/чел ∙ 1000чел = 100000 л/сут = 100 м3/сут
Тогда общий расход: Q= 342 + 100 = 442 м3/сут
Глава 5
Технико – экономические показатели очистных сооружений малых населённых пунктов
1.5 рекомендации по оптимальному выбору типа и места расположения очистных сооружений.
Выбор типа очистных сооружений для очистки бытовых и близких к ним по составу сточных вод в малых населённых пунктах следует производить исходя из требуемой степени очистки, расхода сточных вод, наличия свободной территории для размещения сооружений, климатических и грунтовых условий.
Исходя из требований к качеству воды в водоёмах в настоящее время требуется почти везде биологическая очистка сточных вод перед сбросом в водоёмы. При выборе типа очистных сооружений рекомендуется, в первую очередь, оценить возможность применения сооружений естественной природной очистки сточных вод, как наиболее дешёвых и надёжных. К их числу относятся сооружения фильтрации и биологические пруды. Сооружения подземной фильтрации применяют при расходах сточных вод до 15 м3/сут, а перед ними сооружают септики.
Аэрационные установки на полное окисление рекомендуется применять при расходе более 15 м3/сут. При расходах более 200 м3/сут могут использоваться также установки с аэробной стабилизацией активного ила. Установки заводского изготовления предпочтительнее сооружений, возводимых на месте, вследствие резкого сокращения трудоёмкости и сроков строительства.
Капельные биофильтры допускается применять только в особых случаях при соответствующем технико – экономическом обосновании, так как их строительная стоимость, эксплуатационные расходы и приведённые расходы в 1,5 раза выше, чем у аэрационных установок.
ЦОК применяются в районах со среднегодовой температурой не ниже +60C (зимняя расчётная температура не ниже 250С), в случаях, когда установки заводского изготовления применять нецелесообразно.
Очистные сооружения должны иметь санитарно – защитные зоны до границ жилой застройки, участков общественных зданий и предприятий пищевой промышленности.
При проектировании очистных сооружений и определении места их расположения необходимо максимально использовать все возможности снижения затрат:
Размещение сооружений на малоценных землях;
Сокращение территории очистных сооружений;
То же, санитарно – защитной зоны;
Оптимизация районной системы системы канализации.
Для сокращения территории очистных сооружений рекомендуются следующие меры:
Уменьшение расстояний между отдельными сооружениями по очистке;
Блокировка сооружений в группы;
Применение компактных установок;
Объединение в едином комплексе насосной и очистной станции.
Сокращение ширины санитарно – защитной зоны достигается в результате следующих мероприятий:
Размещение сооружений для сушки ила в закрытом помещении;
Отказ от устройства иловых площадок;
При очистке бытовых и близких к ним по составу сточных вод в объёме Q = 25…900 м3/сут капиталовложения на строительство очистного комплекса в ценах 2002 года тыс. руб., могут быть вычислены по формуле.
(1)где К1 – коэффициент пересчёта цен 1991 года к ценам 2002 года; примем
К1 = 30
Q - расход сточных вод; м3/сут
Капиталовложения, отнесённые К 1м3 суточной пропускной способности,
суточной пропускной способности, руб/м3, вычисляется по формуле
(2)аналогичная зависимость установлена между капиталовложениями нагрузкой по БПК5, кг/сут,
(3)Пределы БПК5 при этом 8…400 кг/сут.
Экономическое сравнение возможных вариантов отведения и очистки сточных вод проводится по общеизвестной методике нахождения минимума приведённых затрат годовых затрат. П, тыс.руб.
(4)где Э – годовые эксплуатационные затраты, тыс.руб.; ЕН – нормативный коэффициент эффективности капиталовложений, равный 0,14; К – капиталовложения, тыс. руб.