* парниковый эффект;
* разрушение озонового слоя;
* кислотные осадки.
Второе место по загрязнению окружающей среды занимает транспорт, особенно автомобильный. В 1992 г. Автомобильный парк мира составлял 600 миллионов единиц и при сохранении тенденции роста к 2015 г. Может достигнуть 1,5 млрд. единиц ([2] стр. 41). Сжигание автотранспортом ископаемого топлива повышает концентрации CO,NOx,CO2, углеводородов, тяжелых металлов и твердых частиц в атмосфере, он же дает твердые отходы (покрышки и сам автомобиль после выхода из строя) и жидкие (отработанные масла, мойка и т. д.). На долю автомобилей приходится 25 % сжигаемого топлива. За время эксплуатации, равное 6 годам, один усредненный автомобиль выбрасывает в атмосферу: 9 т CO2, 0,9 т CO, 0,25 т NOx и 80 кг углеводородов.
Конечно, по сравнению с энергетикой и транспортом глобальное загрязнение посредством химической промышленности невелико, но это тоже достаточно ощутимое локальное воздействие. Большинство органических полупродуктов и конечная продукция, применяемая или производимая в отраслях химической промышленности, изготавливается из ограниченного числа основных продуктов нефтехимии. При переработке сырой нефти или природного газа на различных стадиях процесса, например, перегонке, каталитическом крекинге, удалении серы и алкилировании, возникают как газообразные, так и растворенные в воде и сбрасываемые в канализацию отходы. К ним относятся остатки и отходы технологических процессов, не поддающиеся дальнейшей переработке.
Газообразные выбросы установок перегонки и крекинга при переработке нефти в основном содержат углеводороды, моноксид углерода, сероводород, аммиак и оксиды азота. Та часть этих веществ, которую удается собрать в газоуловителях перед выходом в атмосферу, сжигается в факелах, в результате чего появляются продукты сгорания углеводородов, моноксид углерода, оксиды азота и диоксид серы. При сжигании кислотных продуктов алкилирования образуется фтороводород, поступающий в атмосферу. Также имеют место неконтролируемые эмиссии, вызванные различными утечками, недостатками в обслуживании оборудования, нарушениями технологического процесса, авариями, а также испарением газообразных веществ из технологической системы водоснабжения и из сточных вод.
Из всех видов химических производств наибольшее загрязнение дают те, где изготавливаются или используются лаки и краски. Это связано с тем, что лаки и краски часто изготавливают на основе алкидных и иных полимерных материалов, а также нитролаков, обычно они содержат большой процент растворителя. Выбросы антропогенных органических веществ в производствах, связанных с применением лаков и красок составляет 350 тыс. т в год, остальные производства химической промышленности в целом выделяют 170 тыс. т год ([1], стр. 147).
Рассмотрим более подробно воздействие химических веществ на окружающую среду. Исследованием влияния антропогенных химических веществ на биологические объекты окружающей среды занимается экотоксикология. Задачей экотоксикологии является изучение воздействия химических факторов на виды, живые сообщества, абиотические составляющие экосистем и на их функции.
Под вредным воздействием, наносимым соответствующей системе, в экотоксикологии понимают:
· явственные изменения обычных колебаний численности популяции;
· долгосрочные или необратимые изменения состояния экосистемы.
Любое воздействие начинается с токсического порога, ниже которого не обнаруживается влияние вещества (NOEC - концентрация, ниже, которой не наблюдается воздействие). Ему отвечает понятие экспериментально определяемого порога концентрации (LOEC - минимальная концентрация, при которой наблюдается влияние вещества). Применяется также третий параметр: MATC- максимально допустимая концентрация вредного вещества (в России принят термин ПДК - “предельно допустимая концентрация”). ПДК находят расчетом, и ее значение должно находиться между NOEC и LOEC. Определение этой величины облегчает оценку риска воздействия соответствующих веществ на чувствительные к ним организмы ([1] стр. 188).
Химические вещества в зависимости от свойств и строения воздействуют на организмы по разному.
Молекулярно-биологические воздействия.
Многие химические вещества взаимодействуют с ферментами организма, изменяя их структуру. Так как ферменты катализируют тысячи химических реакций, становится понятным, почему любое изменение их структуры глубоко влияет на их специфичность и регуляторные свойства.
Пример: цианиды блокируют фермент дыхания - цитохром-с-оксидазу; катионы Са2+ тормозят активность рибофлавинкитазы, которая является переносчиком фосфата на рибофлавин в клетках животных.
Нарушения обмена веществ и регуляторных процессов в клетке.
Метаболизм клеток может быть нарушен под действием химических веществ. Реагируя с гормонами и другими регуляторными системами, химические вещества вызывают неконтролируемые превращения, изменяют генетический код.
Пример: нарушение реакций окислительного расщепления углеводов, вызываемое токсичными металлами, особенно соединениями меди и мышьяка; пентахлорфенол (ПХФ), триэтилсвинец, триэтилцинк и 2,4-динитрофенол разрывают цепь химических процессов дыхания на стадии реакции окислительного фосфорилирования; лидан, соединения кобальта и селена нарушают процесс расщепления жирных кислот; Хлорорганические пестициды и полихлорированные бифенилы (ПХБФ) вызывают нарушения работы щитовидной железы.
Мутагенное и канцерогенное воздействие.
Такие вещества как ДДТ, ПХБФ и полиароматические углеводороды (ПАУ) потенциально обладают мутагенным и канцерогенным воздействием. Их опасное воздействие на человека и животных проявляется в результате длительного контакта с этими веществами, содержащимися в воздухе и пищевых продуктах. По данным, полученным на основе экспериментов с животными, канцерогенное действие осуществляется в результате двухступенчатого механизма:
4.Воздействие на поведение организмов.
Таблица 5. Примеры инициаторов и промоторов канцерогенеза ([1] стр. 194).
Инициаторы | Промоторы | ||
Химические соединения | Биологические свойства | Химические соединения | Биологические свойства |
ПАУ (поликонденсированные ароматические углеводороды), нитрозоамины | Канцерогенный | Кротоновое масло | Сам по себе не канцерогенный |
N-нитрозо-N-нитро-N-метилгуанидин | Эксопозиция перед воздействием промотора | Фенобарбитал | Действие проявляется после появления инициатора |
ДиметилнитрозаминДиэтилнитрозамин | Достаточно однократного введения | ДДТ, ПХБФ ТХДД (тетрахлордибензодиоксин) | Необходимо длительное воздействие |
N-нитрозо-N-метилмочевина | Влияние необратимо и аддитивно | Хлороформ | Вначале действие обратимо и не аддитивно |
Уретан | Не существует пороговой концентрации | Сахарин (под вопросом) | Пороговая концентрация, вероятно зависит от времени воздействия дозы |
1,2-Диметилгидразин | Мутагенное действие | Цикламат | Мутагенное действие отсутствует |
Время | Введение вещества ¯ Порог воздействия | ||
немедленно - несколько суток | ¯ Нарушения поведения (неврологические и эндокринные, химотаксис, фотогеотаксис, равновесие / ориентировка, бегство, мотивация / способность к обучению) | ¯ Биохимические реакции (ферментная и метаболическая активность, синтез аминокислот и стероидных гормонов, мембранные изменения, мутации ДНК) ¯ ¾¾¾¾¾¾¾¾¾¾¾¾¾ ½½ | |
½ ½ ½ ½ ½ ½ ½ ½ | ¯ Физиологические (потребление кислорода, осмотическая и ионная регуляция, переваривание и экскреция пищи, фотосинтез, фиксация азота) | ¯ Морфологические изменения (изменения клеток и тканей, образование опухолей, анатомические изменения) ½ | |
часы - недели | ¯¯¯ ¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾¾ ¯ | ||
сутки - месяцы | Изменение индивидуального жизненного цикла (эмбриональное развитие, скорость роста, репродукция, способность к регенерации) ¯ | ||
месяцы - годы | Популяционные изменения (снижение числа особей, изменения возрастной структуры, изменение генетического материала) ¯ | ||
месяцы - десятилетия | Экологические последствия (динамические изменения биоценозов / экосистем, их структуры и функции) |
Рис. 1. Воздействия на биологические системы по мере их усложнения ([1] стр. 201).