Фомин Геннадий Васильевич, старший научный сотрудник ГНЦ РФ Институт биофизики
Предисловие
Настоящие рекомендации и требования разработаны ГНЦ РФ Институтом биофизики Главного управления по медико-биологическим и экстремальным проблемам Минздравмедпрома.
Научный руководитель - зам. директора Института, канд. техн.наук О.А.Кочетков, ответственный исполнитель - старший научный сотрудник Г.В.Фомин
1.Введение
Персонал ИТЭР может подвергаться воздействию различных видов неионизирующих излучений-электромагнитных полей (ЭМП):
-магнитного поля,постоянного и квазипостоянного, обусловленного токами плазмы и магнитных катушек,и импульсного,обусловленного колебаниями плазмы ;
-ВЧ-и СВЧ-излучений при утечках от оборудования для нагрева плазмы;
-лазерного излучения от оборудования для диагностики плазмы ;
-электрического и магнитного поля промышленной частоты от высоковольтного оборудования;
-циклотронного излучения (СВЧ-излучения с частотой выше 1ООГГц), возникающего из магнитотормозного излучения отдельных электронов.
1.1.Цель
Цель-разработка рекомендаций и требований по защите персонала при проектировании ИТЭР.В силу международного характера ИТЭР необходимо выявить и объединить все национальные критерии по электромагнитной безопасности.
1.2.Аннотация
Представлены данные по нормированию неионизирующих излучений в зависимости от двух концепций воздействия-энергетической и информационной. Особое внимание обращено на малоизвестную концепцию информационного воздействия, при котором определяющим параметром ЭМП является модуляция.
В виде отраслевых методических рекомендаций обоснована необходимость временной регламентации работ в квазипостоянных магнитных полях,необходимость экранирования ВЧ,СВЧ и лазерных излучений,необходимость возможной автоматизации и механизации работ в магнитных полях.
Даны нормы на ВЧ излучение в зависимости от частоты излучения,нормы на СВЧ излучения в величинах мощностей излучения,падающего на единицу площади,даны рекомендации по безопасносности лазеров.Сделан вывод о том,что нормирование в России более "жесткое",чем в других странах-участников проекта ИТЭР.
Ввиду практического отсутствия приборов по контролю магнитных полей,пригодных для измерения на плазменных установках, проанализированы и рекомендованы наиболее подходящие методы и средства контроля магнитных полей.Представлены данные по разработке и апробации прибора для индивидуального контроля постоянных магнитных полей. Даны рекомендации по инспекционному и индивидуальному контролю неионизирующих излучений.
Даны проектные требования к помещениям ИТЭР c учетом комбинированного воздействия ионизирующей и неионизирующей радиации.
2.Критерии
При действии ЭМП на биосистемы различают три уровня: первичные физико-химические,кибернетические и общие механизмы биологического действия ЭМП /21/.В основе первичных механизмов лежат физико-химические законы взаимодействия ЭМП с веществом:изменение траектории движущихся в МП заряженных частиц /например эритроцитов/;смещение или вращение анизотропных частиц,имеющих различную магнитную восприимчивость,изменения биогенного магнетита в клетках магниторецепторов, химическая поляризация электронов и ядер,приводящих к изменению кинетики радикальных химических реакций;расщепление квантовых уровней /эффект Зеемана/ и т.д.Однако следует отметить,что первичные физико-химические механизмы не могут ни предсказать,ни объяснить биологические эффекты.Это связано с тем,что между первичным взаимодействием ЭМП с элементами организма и биологическим эффектом имеется множество переходных звеньев,большинство которых неизвестны.Многие из этих промежуточных звеньев охвачены взаимопереплетающимися обратными связями.Поэтому для биологии и медицины гораздо более существенным является выяснение кибернетических механизмов действия ЭМП,которые сформулированы в виде змпирических обобщений /21/.Что касается общих механизмов действия ЭМП,то они,как и любые патофизиологические процессы,являются общими для всей медицины и не имеют "электромагнитной" специфики /1/.
В настоящее время большинство опубликованных работ касается энергетической концепции воздействия ЭМП,в которой биологические эффекты пропорциональны поглощенной энергии излучения,т.е. поглощенной дозе /12,13,17,21,38,44,45/.
Информационное воздействие характеризуется тем,что эффекты воздействия определяются модуляцией воздействующего фактора /ритмом воздействия/ и состоянием систем организма /4,5,6,7,10,16,40/.Малочисленность научных работ по информационному воздействию подчеркивает их научную новизну,однако теоретически возможно,что энергетическое воздействие будет частным случаем информационного,т.к. существует не только частотная,но и амплитудная модуляция /6/.Термин модуляция специалистами понимается по-разному.По определению из Большой советской энциклопедии /1974/: модуляция колебаний - это медленное по сравнению с периодом колебаний изменение амплитуды,частоты или фазы колебаний по определенному закону К.Шеннон /37/ понимал модуляцию "как отображение пространства сигнала в пространство сообщения".Радиоинженеры понимают модуляцию как изменяющийся по определенному закону частотный спектр т.е. ритм сигнала /13/.Для нашего случая полезно последнее понимание,т.к. амплитудная,кодово-импульсная и фазовая модуляция по преобразованию Фурье непосредственно связаны с частотной модуляцией.По существу процесс измерения (детектирования),в том числе и в дозиметрии,тоже основан на процессе модуляции или демодуляции.
Уже с тех пор,как СВЧ-техника получила широкое распространение стало известно,что волны СВЧ большой мощности могут вызвать у человека развитие ожога или теплового удара.Позже были получены результаты исследований,доказывающие наличие неблагоприятных эффектов при действии ЭМП более низкой частоты и интенсивности,в частности таких эффектов,как изменение скорости химических реакций /39/, нарушение иммунной системы,нарушения в составе белой крови /4, 27,31/,повреждение хромосом,развитие раковых опухолей /12/ и т.д. Действующее в настоящее время нормирование,как правило,ограничивает величины,пропорциональные энергии ЭМП.Например,для СВЧ -излучения Американским Национальным Институтом Стандартов принята величина интенсивности поглощенной энергии О,4Вт/кг /44/. Только в редких случаях учитываются другие биотропные параметры ЭМП:длительность воздействия,характер импульсов,градиент и направленность поля /17,21,46/. Интерес к информационным процессам для биологических систем появился совсем недавно,по сравнению с задачами о передаче энергии.Объяснить это можно тем,что основополагающие работы Шеннона по теории информации и Винера по кибернетике вышли только 40 лет назад.Уже тогда было установлено,что система передачи информации состоит из передатчика,канала передачи /подверженного шуму/ и приемника.Основными факторами для передачи информации через канал являются природа сигнала,затухание,шум,конфигурация приемника и передатчика,модуляция /ширина частотной полосы/, скорость передачи информации в канале.Работы по информационному воздействию ЭМП на организм следует разделить на три типа:
-передача информации от источника излучения к живой системе /перенос информации электромагнитным полем/
-передача информации в живой системе
-изменение информации или энтропии системы при воздействии ЭМП.
Впервые электромагнитный канал связи изучался с физической точки зрения в работах Габора /43/,подчеркнувшим,что теория информации должна рассматриваться не как математическая дисциплина,а как ветвь физики.Но лишь в классической работе Бриллюэна /14/ был сформулирован в общем виде негэнтропийный принцип информации и установлена глубокая связь между физической энтропией и информацией.С точки зрения этого принципа всякая информация представляется некоторым состоянием физической (биологической) системы и связана с отклонением ее от термодинамического равновесия или от состояния с равными вероятностями /4/.В дальнейшем /14/ были использованы квантомеханические соображения для рассмотрения канала передачи информации,образуемого передатчиком,излучающим электромагнитный сигнал со средней мощностью Рср и приемником, на который воздействует сигнал и аддитивный шум /тепловое излучение/ с мощностью Рш.В результате для максимальной скорости передачи информации " С " была физически обоснована известная формула Шеннона:
C = Df·log2( 1 + Pср/ Pш) (1)
где Df -ширина частотной полосы,в которой сосредоточена мощность cигнала /т.е. где промодулирован сигнал/.По сути Df -величина модуляции.Данная формула верна для ЭМП с частотой до порядка 10в10 Гц.Для рентгеновского и гамма-излучений в работе /14/ определены другие выражения.
Возможно,что первой работой по применению теории информации в биологических жидких системах была работа Ямомото /47/, затем последовала работа Баглайрелло /48/.В этих работах рассматриваются два основных вида каналов передачи информации: нервная система и гуморальная система /в частности система крови/. Хотя нейрон,как и любая клетка-это жидкая система и в некоторых нейронах обнаружены магниторецепторы,более наглядны представления по гуморальному каналу,в котором соответствие между потоком вещества и передачей сигналов более тесное. Гуморальный канал может передавать сигнал химическим путем в виде гормонов,растворенных газов (СО2,О2,N2),физическим путем(температура,давление) или посредством прямо передаваемых объектов (зритроциты,лейкоциты и т.д.) /48,49/.
Модуляция имеет первостепенное значение для передачи информации.Именно она приводит сигнал в соотношение с характеристиками среды,иначе сигнал не будет пригоден для передачи.Это выполняется за счет наложения сигнала на волну носителя.так широко известно,что рот двигается с низкой частотой /менее 1ОГц/,а для передачи сигнала на большое расстояние по воздуху сигнал модулируется посредством голосовых связок,генерирующих высокую частоту.Точно также предкапиллярные сфинкторы могут рассматриваться как модуляторы потока эритроцитов и лейкоцитов.Сердце тоже модулирует сигналы,а дыхание модулирует обонятельные сигналы,сигналы легочных газов и даже ритм сердечных сокращений /2/. Для оценки максимальной скорости передачи информации в гуморальном канале /48,49/ также используется известная формула Шеннона.При помощи этой формулы были получены оценки по скорости передачи информации в артериях,капиллярах,в нервной системе.В среднем она составляет около 1ООбит/с.