Смекни!
smekni.com

Оценка техногенного загрязнения объектов окружающей среды в условиях промышленного комплекса (стр. 2 из 3)

Основными причинами загрязнения являются поступление на очистные сооружения стоков промышленных предприятий, не отвечающих ПДК ("Нормы ПДК загрязняющих веществ в сточных водах, направляемых в городскую канализационную сеть").

Таким образом, в поверхностных водах города Воронежа определен стабильный набор загрязнителей, по которым регистрируются превышения нормативов: нефтепродукты, железо, марганец, СПАВ, систематически высокие значения колииндекса.

Подземные воды Воронежское водохранилище разделяет г. Воронеж на право- и левобережную части, характеризующиеся различными гидрогеологическими условиями и степенью естественной защищенности подземных вод от загрязнения.

Основным эксплутационным водоносным горизонтом является верхнеплиоценовый (кривоборский). Он защищен сверху от компонентов –загрязнителей слоем плиоценовых глин мощностью 4-10 метров. Водоносный горизонт является напорнобезнапорным с величиной напора до 10 метров; мощность его, в среднем, составляет 25 метров.

На плиоценовых глинах залегает средневерхнечетвертичный водоносный горизонт, не имеющий хозяйственного значения. Он представлен в виде родникового стока правобережья и используется населением города локально из каптированных родников. Некоторые из них пользуются большой популярностью, хотя родниковая вода отличается несоответствием качества согласно ГОСТу 2874-82 "Вода питьевая" по ряду нормируемых компонентов (табл.1), в силу неглубокого залегания и отсутствия экранирующих слабопроницаемых отложений.

В левобережной части развит неогенчетвертичный водоносный комплекс, мощность которого по сравнению с водоносным кривоборским горизонтом увеличивается за счет появления в верхней части разреза песков верхне-среднечетвертичного возраста, неразделенных с неогеновыми песками плиоценовыми глинами. Мощность водоносного комплекса в среднем составляет 30-35 метров.

Питание подземных вод осуществляется за счет инфильтрации атмосферных осадков и перетока из выше- и нижележащих водоносных горизонтов в местах "гидрогеологических окон". Область питания соответствует области распространения, включая лесопарковую и промышленно-селитебную части городского ландшафта.

Разгрузка водоносных горизонтов осуществляется в водохранилище, естественными выходами на поверхность (родники), а также за счет эксплуатации водозаборных скважин. Удельные дебиты ведомственных скважин составляют 5 - 40 м3/час, коммунальных – до 200 м3/час, родников –0,2-4,2 л/сек.

Нами изучены экологогидрохимические особенности основных эксплутационных водоносных горизонтов в пределах промышленных право- и левобережной зон на основе систематизации химических анализов водных проб из скважин ведомственных водозаборов.

Анализ макрокомпонентного состава подземных вод позволил выделить четыре ведущих геохимических типа: 1) гидрокарбонатный кальциевый или кальциево-натриевый; 2) гидрокарбонатно-хлоридный или хлоридно-гидрокарбонатный натриево-кальцевый; 3) гидрокарбонатно-сульфатный или сульфатно-гидрокарбонатный смешанного катионного состава; 4) смешанного анионного и катионного состава. Типизация вод произведена по классификации Щукарева - Славянова.

Геохимические типы подземных вод явно отражают преобразование их качественного состава, выражающееся в увеличении содержания сульфат - ионов, хлорид- ионов и ионов натрия, порой до концентраций, превышающих предельно допустимые. Такая качественная трансформация химического состава по ряду макрокомпонентов влечет за собой преобразование вод по минерализации – от пресных к слабоминерализованным и тем самым к несоответствию требованиям, предъявленным к питьевым водам.

Пространственное размещение компонентов – загрязнителей различной степени опасности полностью коррелирует со спецификой производства. Например, установлены локальные очаги загрязнения хромом в пределах АО "Электросигнал", АООТ "Тяжэкс" им. Коминтерна, АООТ "ВАСО", ГП "Воронежский механический завод", КБХА. Здесь же отмечена повышенная минерализация –0,8-1,2 г/л. На водозаборе АООТ "Полюс", помимо высокого содержания шестивалентного хрома (0,15 мг/л), нитраты достигают 2 ПДК (90 мг/л), жесткость -1,7 ПДК (12 мг-экв), бор - 3 ПДК (1,5 мг/л).

Ведомственные водозаборы, в силу несоответствия качества воды для питьевых целей, используются как источники технической воды, поэтому здесь нет опасности для здоровья. Тем не менее, актуальность изучения техногенной трансформации подземных вод неоген-четвертичного водоносного комплекса и необходимость мониторинговых исследований определяется расположением промышленных предприятий в пределах областей питания коммунальных водозаборов. Например, на левом берегу, в области питания водозабора №8 расположено ОАО "Видеофон", в стоках которого присутствуют соединения тяжелых металлов. В области питания водозабора №9 находятся ОАО "Шинник", ПО "Рудгормаш". В стоках этих предприятий обнаружены цинк, никель, марганец, железо и нефтепродукты.

Все предприятия города находятся во втором поясе зоны санитарной охраны действующих коммунальных водозаборов. Наибольшая опасность загрязнения подземных вод, в силу их незащищенности, представляется для левого берега. В настоящее время на участках коммунальных водозаборов отмечаются повышенные содержания железа, марганца, наметилась тенденция увеличения жесткости. Геохимическая природа этих компонентов рассмотрена в работах [1,2]. Насколько же серьезна ситуация в пределах каждого водозабора отражено в табл. 2-4.

Анализируя данные таблиц, делаем вывод, что по всем трем показателям самая благоприятная ситуация сложилась на водозаборе №9, являющимся водозабором водораздельного типа, гидравлически не связанным с водохранилищем (это еще раз подтверждает источник поступления тяжелых металлов на участки инфильтрационных водозаборов из водохранилища, а точнее – из его донных отложений). Самыми неблагоприятными в экологическом отношении участками водозаборов являются (в порядке возрастания степени загрязнения вод): ВПВ-4, ВПВ-3, ВПВ-8, ВПВ-11. Водозабор №12 расположен на берегу реки Усмань. Здесь высокие содержания марганца и железа определяются, в основном, биогеохимическими факторами (развитие высшей водной растительности, восстановительный гидрохимический режим).

Показатели качества питьевой воды в 1999 году (табл. 5,6) по районам города говорят о том, что качество питьевой воды в разводящей сети не отвечает требованиям ГОСТа 2874-82 "Вода питьевая" по содержанию железа (1-6 ПДК в Советском районе, 1,2-12 ПДК в Коминтерновском, 1,7-10 ПДК в Железнодорожном, 1,6-15 ПДК в Левобережном, 1,3-38 ПДК в Ленинском и 3-21 ПДК в Центральном районе). Повышенные содержания марганца варьируют в пределах 1-14 ПДК в целом по районам города.

Основанием приведенной системы оценочных критериев явились гигиенические и экологогеохимические исследования.

Загрязнение подземных вод тесно связано с загрязнением компонентов окружающей среды – приземного слоя атмосферы, почв, пород зоны аэрации, поверхностных вод, донных отложений.

Загрязнение почв и зоны аэрации являются вторичным источником загрязнения подземных вод. Загрязнение атмосферного воздуха сказывается на изменении гидрохимического фона подземных вод.

Контроль за состоянием подземных вод должен быть связан с контролем за состоянием атмосферы, поверхностных вод и почвенного покрова.

Почвенный покров При исследовании почвенного покрова пробы отбирались из поверхностного горизонта. Определялась подвижная форма тяжелых металлов в почве. Актуальность оценки степени загрязнения почв в пределах территориально-промышленного комплекса заключается в становлении их вторичным источником поступления тяжелых металлов в приземные слои атмосферы и далее в организм человека. По данным Т.Н.Симуткина [6] 50-60% пыли в приземной части атмосферы имеет почвенный генезис.

Основными вкладчиками в загрязнение почв тяжелыми металлами являются промышленные предприятия, как источники аэрогенных выбросов, токсичных отходов и автотранспорт, что связано с выделением тяжелых металлов в окружающую среду за счет использования горюче-смазочных материалов, содержащих в качестве присадок свинец, цинк, медь, хром, никель, а также выброса соединений металлов из двигателей внутреннего сгорания в результате коррозийно-агрессивных свойств топлива. За основу определения уровня загрязнения почвенного покрова взяты: показатель загрязнения (ПЗ) и суммарный показатель загрязнения (СПЗ) для ассоциаций элементов, согласно методике, описанной в работе [4]. Для расчета этих показателей необходимо знать фоновую концентрацию элемента (Сф) в почве. В качестве Сф нами взята наименьшая концентрация, повторяющаяся в пределах исследуемой территории. А именно: Сф для Zn составляет 1,5 мг/кг, для Pb – 5 мг/кг, Ni – 1 мг/кг, Cu – 0,8 мг/кг, Cr – 2 мг/кг, Со – 0,008 мг/кг, Cd – 0,2 мг/кг, Mn – 2 мг/кг.

Эколого-геохимический анализ техногенного загрязнения почвенного покрова г.Воронежа показал, что наиболее приоритетными элементами являются цинк, свинец, медь, марганец.

Одной из причин накопления цинка в поверхностных почвенных горизонтах является его способность сорбироваться минеральными и органическими компонентами с образованием устойчивых соединений. Пробы с высоким содержанием цинка (23,9-125,5 мг/кг) отмечаются во всех районах города. Средний уровень загрязненности почв (ПЗ=10-16) цинком характерен для улиц: Димитрова, Остужева, Славы, Домостроителей, Ломоносова, Тимирязева, Казакова, К.Маркса, Ворошилова. К сильному уровню загрязнения с ПЗ=16-32 относятся улицы Космонавтов, Березовая Роща, Красовского, Моисеева, Кирова. К «очень сильному» уровню загрязнения (ПЗ=32-64) относятся пробы, отобранные на улицах Дружинников, Проспект Труда, Пешестрелецкая, Никитинская.