Смекни!
smekni.com

Поиск и характеристика фильтрующих материалов для очистки вод (стр. 4 из 6)

Важнейший вывод, вытекающий из анализа данных табл.8, заключается в том, что на поверхности ФМ отсутствуют все вилы микроорганизмов даже после 15 дней эксплуатации, то есть на ФМ из ультратонких ПП микроволокон не размножаются никакие микроорганизмы.

Таблица 9 –

Содержание микроорганизмов (колоний/мл) в фильтрате

№об. Висходной воде Фильтрат После термостатирования 6 сут По ГОСТ 2874-82
первая порция после 15-ти минутной промывки Исх. вода Первая порция После 15-ти мин. промывки
1 0 - 1,7 60 80 40 100
2 0 - 4,2 60 сплошное обрастание 100

Значит такой ФМ не обрастает бактериями в процессе эксплуатации. Появление микроорганизмов в смывной жидкости, а также наличие большой) «к количества в фильтрате после 10 и 15 дней эксплуатации обусловлено размножением и накоплением их на поверхности комплектующих фильтра, в застойных зонах фильтродержателя, в соединительных трубопроводах. Эти микроорганизмы представляют собой грам-положительные палочки и их споры, размер которых колеблется в широких пределах: ширина 0,3-2,2 мкм, длина - 1,7 - 7мкм. Мельчайшие из них проходят через поры ФМ, накапливаются и размножаются на различных поверхностях и смываются током воды. Чтобы показатели воды по микрофлоре соответствовали ГОСТ 'у "Вода питьевая", фильтрационную систему необходимо периодически подвергать стерилизации.

Придание ФМ функций бактерицидности

Известно, что серебро и медь, будучи нанесены на те или иные материалы, придают последним бактерицидные свойства. С этой целью на образцы ФМ из ПП или ПКА микроволокон наносили из водной дисперсии медь и серебро. Для сравнения использовали также ПП мононить диаметром 0,1 - 0.2мм, полученную из тою же ПП но по традиционной технологии. Характеристики исследованных образцов представлены в табл.10. Все исследования были выполнены на киевском заводе "Квазар". При этом оценивали: содержание серебра или меди в фильтрате (водопроводная питьевая или деионизоваиная вода); содержание микроорганизмов в фильтрате; обрастание ФМ микроорганизмами. Содержание серебра и меди в фильтрате определяли спекральным методом после предварительной промывки ФМ дистиллированной водой в течение 15 минут. Использовался кварцевый спектрограф ИСП- 30. Количество колоний микроорганизмов считали под микроскопом на поверхности дискового мембранного фильтра с диаметром пор 0,2 мкм после пропускания через него определённого объёма фильтрата и выдерживании фильтра в течение 2-х суток при температуре 37˚˚С в питательной среде рыбосептонного агара. Для оценки степени обрастания фильтроматериала микроорганизмами дисковый образец выдерживали в среде водопроводной воды шесть суток, промывали свежей водопроводной водой и определяли содержание микроорганизмов: в первой порции фильтрата; в фильтрате после предварительной промывки в течение 15 минут, на поверхности ФМ после термостатирования при температуре 37°С в течение 5 суток в питательной среде.

Таблица 10 -

Характеристики исследованных образцов

№образца Тип образца Характер предварительной обработки
1 ФМ из ПП микроволокон без обработки
2 ПП мононить диаметром 0,1 – 0,2 мм без обработки
3 ФМ из ПП микроволокон нанесение порошка серебра на поверхность ФМ
4 ФМ из ПП микроволокон обработка водной суспензией металлического серебра
5 ФМ из ПП микроволокон нанесение на поверхность ФМ порошка металлической меди

Результаты показали, что медь и серебро из обработанных ими ФМ не выносятся в фильтрат. Это свидетельствует о прочном закреплении этих металлов на ПП микроволокнах. Образцы ФМ из ПП микроволокон не обрастают микроорганизмами даже при увеличении количества колоний в фильтруемой среде (табл.10, 11). Таким образом, еще раз был подтвержден факт о том, что на созданных тонковолокнистых ПП материалах не размножаются

Таблица 11 -

Данные по обрастанию образцов ФМ микроорганизмами

Содержание колоний на поверхности ФМ Номер образца
1 2 3 4 5
Контрольный образец 0 0 0 0 0
ФМ после выдерживания 6 суток 0 Сплошное обрастание 0 0 0

бактерии. Значит, такие ФМ могут быть рекомендованы для очистки питьевой воды в течение длительного времени без стерилизующей обработки.

Получение ФМ из смесей с полиоксиметиленом

Из ранее выполненных исследований стало известно, что полиоксиметилен (ПОМ) - полимер мономерного формальдегида - способен отщеплять во влажных средах очень незначительное количество формальдегида, являющегося антисептиком. В результате изделие из ПОМ обладают бактерицидными свойствами. Поэтому представляло научный и практический интерес исследование влияния добавок ПОМ на свойства ФМ из полипропиленовых микроволокон. Добавки ПОМ в количестве 5. 10, 20, 30 % мас. вводили на стадии смешения полимеров. Из трёхкомпонентной смеси получали ФМ, в котором ПОМ находился в виде микроволокон, что обеспечивало развитую поверхность.

Результаты микроскопических исследований показали, что добавка 5-10% мас. ПОМ существенно улучшает волокноообразование ПП в матрице сополиамила и позволяет увеличить содержание полипропилена в смеси до 40 % мас. Дня сопоставления формовали мононить из исходного ПОМ по традицонной технологии. Количество выделившегося формальдегида при прогреве ФМ и мононити оценивали методом инфракрасной спектроскопии. Результаты показали, что ФМ, сформованный из трёхкомпонентной смеси и содержащий всего 5% мас. ПОМ, выделяет такое же количество формальдегида как и нить из 100%-ного полиоксиметилена. Это объясняется именно тем, что ПОМ в виде микроволокон имеет очень развитую поверхность. Последние усиливает процессы деструкции с выделением формальдегида. Отсюда открывается новый путь придания фильтрующим материалам из ПП микроволокон 6актерицидных свойств, и, что очень важно, для этого достаточно вводить в смесь небольшое количество добавки ПОМ.

Мы привели результаты лабораторных исследований ФМ. Для того, чтобы эти исследования реализовать в промышленном масштабе необходимо ответить на еще многие нерешенные проблемы. Какая должна быть конструкция фильтра? Количество и толщина слоев ФМ? Скорость фильтрации? Прочность ФМ и давление сопротивления фильтрации? Какие условия для проведения регенерации? Это далеко не полный список вопросов, которые мы ответим в следующей статье по результатам наших научных исследований уже непосредственно в производственных условиях.

Мембраны

Крупнейшее предприятие России в области мембран и мембранных технологий разделения жидких и газообразных примесей является ЗАО НТЦ «Владипор» г. Владимир – дочернее предприятие ОАО «Полимерсинтез». ОАО « Полимерсинтез» (до 1992 г. НПО «Полимерсинтез») занимающихся разработкой и изготовления мембран более 35 лет, координировал все научно – исследовательские и опытные работы, проводившиеся в стране в области полимерных мембран и мембранных процессов. В настоящее время ЗАО НТЦ «Владипор» имеет исследовательскую часть в составе четырех научных лабораторий и цех опытно – промышленных и опытных установок для проведения опытных работ и выпуска мембранной продукции на основе собственных научно – технических разработок. ЗАО НТЦ «Владипор» является собственником лабораторного корпуса площадью 7464м2 и цеха площадью 5594 м2, что говорит о его большом производственном потенциале.

Аналогичную продукцию выпускает в г. Владимире НПП «Технофильтр», основанный в 1991г, а также ВНИИПБТ, ГОС НИИ ЭЧиГОС им. А.Н. Сысина, ГОС НИИ «Медполимер» (г. Москва) и многие другие.

Данные предприятия изготовляют следующие типы мембран и элементов:

полимерные мембраны (обратноосмотические, нанофильтрационные, ультра фильтрационные, микро фильтрационные, газоразделительные, первапорационные) на основе полиамидов, фторопласта, ацетатов целюлозы и др. полимеров;

рулонные, трубчатые и патронные фильтрующие элементы различной длины (от 250 до 2000 мм) и различного диаметра на основе вышеуказанных мембран.

По форме мембранная продукция изготовляется в виде:

дисковых мембран (серии МФАС–Б; МФАС–М; МФАС-П; МФАС- МПА; МФФК; МФФК–Г; МФФК; МФФК–Г; ММК; КФБЖ и др. см. рис.2 )

рулонных элементах (серии ЭРУ; ЭРН; ЭРО); (см. рис. 3 )

трубчатых мембранных модулей (тип БТУ и БТМ, рис. 4) ;

патронные элементы (марок ЭПМ.Ф; ЗПМ.К; ЭПМ.ФГ; ЭПМ.ПС; ЭПМ.Л; ЭПМ.К+; ЭПМ.АЦ; ЭПВ.СЦ; ЭПВг.П; ЭПНС; ЭПНС.П; ЭПСФ,см. рис.5 )

капсульные фильтры (марок КФМ.К; КФМ.Ф; КФМ.ФГ; КФМ.ПС, см. рис. 6 ) Производство их возрастает, и ассортимент также не стоит на месте.

По данным производителя мембран, применительно к воде, область их использования в следующих позициях:

умягчение воды и очистка поверхностных вод от низкомолекулярных веществ;

концентрирование и очистка солевых растворов;

получение апирогенной воды;

обеззараживающая фильтрация воды;

контроль качества воды.

Микрофильтрационная фторопластовая композиционная гидрофобная мембрана марки МФФК представляет собой пористый пленочный материал (см. рис. 7) на основе фторопласта Ф42Л (сополимер тетрафторэтилена и винилденфторида) армированный различными нетканными материалами